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 Introduction 

 Evidence from numerous studies has revealed for decades, if 
not centuries, that a close functional and developmental rela-
tionship exists between muscle and bone mass. Embryonic 
muscle paralysis and abnormal myogenesis lead to bones that 
are poorly mineralized and lack normal curvature, 1  and muscular 
dystrophies are associated with relatively low bone density and 
an increased incidence of bone fractures. 2  Loss of muscle mass 
with age, and the gradual infiltration of muscle with adipose tis-
sue (myosteatosis), have been implicated in age-related bone 
loss and an increased risk of falls and fractures. 3  Moreover, 
muscle paralysis using agents such as botulinum toxin induces 
bone loss 4  and impairs fracture healing. 5  On the other hand, sig-
nificant increases in muscle mass with myostatin deficiency are 
associated with larger muscle attachment sites and increases in 
bone cross-sectional area. 6,7  Historically, a number of different bio-
mechanical and physiological mechanisms have been presented to 
explain the underlying relationship(s) between muscle function and 
bone metabolism. These range from mechanical models linking 
loading rates and strain history with bone adaptation, 8,9  to others 
linking muscle contraction with changes in fluid flow within bone 
tissue, which can in turn regulate bone formation. 10  

 The majority of models, including those cited above, that link 
changes in muscle mass with alterations in bone formation and 

strength appropriately emphasize the important role of muscle 
contraction in generating mechanical stimuli for bone. Hence, 
the muscle – bone relationship is in large part a mechanical one, 
with muscle being the key driver in this relationship via the 
contractile forces that it imposes upon bone tissue. Indeed, 
it is clear from numerous studies that mechanical stimulation 
is important for bone health, and that exercise-induced mus-
cle contraction may enhance bone mass during growth. There 
is, however, evidence that muscle tissue itself may have posi-
tive effects on bone formation and bone repair independent of 
mechanical stimulation. For example, it is well established in the 
clinical literature that covering bone fractures with muscle flaps 
improves fracture healing in cases of traumatic orthopaedic 
injury, 11 – 13  and that implants of muscle alongside periosteum 
can stimulate new bone formation directly. 14  Similarly, mus-
cle damage and trauma to muscle surrounding bone defects, 
can impair and delay bone healing. 15,16  These findings provide 
additional support for the concept that health and viability of 
the muscle bed are key for normal bone formation and bone 
repair. 17 – 19  

 The fact that muscle flaps alone can enhance bone forma-
tion suggests that muscle may serve as an important collat-
eral source of blood for adjacent bone tissue, 16  and perhaps 
as a source of trophic factors. 14,17  This review focuses on the 
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latter hypothesis for the following reasons. First, it is clear that 
intact muscle flaps are a rich source of secreted growth fac-
tors. 20  Second, although muscle does provide important vas-
cular support for bone, skin has a higher vascular density than 
muscle, yet fasciocutaneous skin flaps do not have the same 
anabolic effects on healing bone as muscle flaps. 21  Third, it 
is clear that conditioned medium from cultured muscle cells 
has positive effects (for example, increasing extracellular matrix 
synthesis) on cultured chondocytes, 22  revealing that muscle is 
a source of secreted growth factors both  in vivo  and  in vitro . 
Finally, the muscle secretome has become increasingly well 
characterized. 23 – 27  We now know that muscle secretes a wide 
variety of growth factors, cytokines and molecules involved in 
extracellular matrix remodeling. Moreover, different laboratories 
have independently identified the same factors secreted from 
muscle, further validating the existence of a well-defined mus-
cle secretome. Some of these factors have been referred to as 
 ‘ myokines ’  by different authors; 28 – 30  however, several muscle-
derived factors (for example, IGF-1, FGF-2, IL-6) are secreted 
in abundance by other tissues, so the term myokine should not 
be taken to imply that they are muscle-specific. 

 Our growing knowledge of the muscle secretome has 
important implications for bone biology, as it presents new 
opportunities for targeting muscle in order to better develop 
the therapeutic program for aging and healing bone. This 
review seeks to highlight the muscle-derived factors that may 
impact bone metabolism, and also propose future directions 
for research aimed at advancing our current understanding of 
muscle – bone crosstalk.   

 Growth Factors Actively Secreted by Skeletal Muscle  

 Insulin-like growth factor-1 (IGF-1).   Wound exudates 
from intact muscle flaps contain high levels of IGF-1, 20  and 
immunohistochemistry has been used to localize IGF-1 along the 
muscle-periosteal interface of mouse forelimbs. 25  These  in vivo  
findings are consistent with  in vitro  studies in which proteomic 
approaches have been used to detect IGF-1 in conditioned 
medium from cultured myotubes. 23,27,31  IGF-1 expression, 
measured as an increase in IGF-1 mRNA, is increased in skeletal 
muscle with muscle contraction, 32  and elevated levels of IGF-1 
protein are detected in serum following resistance exercise. 33  It 
is well established that IGF-1 has important osteogenic effects 
on the skeleton and IGF-1 is also involved in myofiber hyper-
trophy, suggesting that muscle-derived IGF-1 may couple both 
muscle and bone anabolism ( Figure 1 ). 30    

  Basic fibroblast growth factor (FGF-2).      FGF-2 lacks the con-
ventional signal sequence for export out of cells via the classic 
exocytotic pathway, and it has been shown that mechani-
cally induced plasma membrane disruption is one mechanism 
by which FGF-2 is released from myocytes both  in vivo  and 
 in vitro . 34,35  Eccentric, lengthening contractions are particularly 
effective for releasing FGF-2 stored in the cytosol of muscle 
cells, 35  and levels of FGF-2 detected in conditioned medium 
from cultured myotubes are increased with mechanical stretch-
ing. 34  It is important to note here that the muscle  ‘ injury ’  that 
occurs during eccentric muscle contraction involves plasma 
membrane disruptions that are followed by membrane repair. 36  
These types of mechanical disruptions are argued here to 
involve a different cascade of molecular signaling events than 

traumatic muscle injuries that are associated with muscle regen-
eration. The latter type of mechanical and structural disruption 
is much more severe, and involves cleanup of necrotic tissue by 
macrophages, expression of inflammatory factors and activation 
of satellite cells. FGF-2 has positive effects on bone formation in 
estrogen-deficient rodents and is a well-known osteogenic fac-
tor. 25,30  Mechanically induced release of FGF-2 following eccen-
tric contraction and plasma membrane disruption is another 
potential pathway by which physical activity and bone formation 
may be coupled physiologically ( Figure 1 ). 25,30    

  Myostatin (GDF-8).      Although factors such as IGF-1 and FGF-2 
are secreted by a number of tissues in addition to muscle, 
myostatin is most abundant in muscle tissue and appears to be 
secreted primarily by muscle. Thus, myostatin can be consid-
ered a bona fide myokine. Conditions associated with elevated 
levels of myostatin expression include disuse atrophy, cancer- 
and AIDS-related cachexia and increased circulating levels of 
glucorticoids. 30  Myostatin treatment induces muscle wasting 
and myostatin deficiency increases muscle mass. We have 
recently shown that myostatin is highly expressed by injured 
myofibers following traumatic extremity injury, 37  and that local 
application of exogenous myostatin increases skeletal mus-
cle fibrosis and inhibits bone repair. 37  These data are consist-
ent with studies referenced above, demonstrating that intact 
muscle flaps enhance bone repair, whereas coverage of bone 
injuries with damaged muscle does not have the same positive 
effects on bone healing. These  in vivo  data are also consist-
ent with our  in vitro  studies showing that myostatin treatment 
suppresses the proliferation and chondrogenic differentiation of 
bone marrow-derived stromal (stem) cells. 38  In addition, block-
ing the myostatin using a recombinant propeptide improves 
muscle regeneration and fracture healing following orthopaedic 
trauma. 39  Although severe muscle trauma and muscle damage 
increase myostatin expression, which in turn impairs bone heal-
ing, eccentric muscle contraction and exercise both decrease 
myostatin expression in skeletal muscle. 40 – 42  These studies 
suggest that although IGF-1 and FGF-2 are muscle-derived 
factors that can have significant, positive effects on bone forma-
tion, myostatin is a factor released from muscle during traumatic 

    Figure 1             Resistance exercise and eccentric muscle contraction induce the secretion 
and release of the osteogenic factors IGF-1 and FGF-2 from skeletal muscle. In contrast, 
traumatic muscle injury and perhaps systemic inflammation and disuse increase the 
secretion of myostatin from skeletal muscle, which in turns impairs chondrogenesis and 
bone healing.  
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and catabolic conditions that may inhibit and suppress bone 
repair ( Figure 1 ). 30     

 Factors Involved in Extracellular Matrix Remodeling 
Secreted by Muscle  

 Secreted protein acidic and rich in cysteine (SPARC, or 
osteonectin).   SPARC is a glycoprotein that is abundant in the 
extracellular matrix of various tissues including bone and skel-
etal muscle and is involved in tissue repair, remodeling of the 
extracellular matrix, and promoting collagen mineralization by 
osteoblasts. 43  One of the more surprising aspects of research 
on the muscle secretome is the consistency with which SPARC 
is detected as a factor secreted by isolated muscle cells. 
A number of different research groups using both human and 
rodent-derived muscle cells have identified SPARC in condi-
tioned medium from cultured myotubes. 23,24,26,31  SPARC secre-
tion is increased following resistance exercise and myotube 
hypertrophy, 26  but SPARC is also highly expressed following 
injury and during muscle regeneration. 44  Additional research 
is needed to determine the role of muscle-derived SPARC in 
bone formation, but the studies reviewed above suggest that 
exercise-induced SPARC secretion could potentially have a role 
in enhancing bone formation and mineralization ( Table 1 ).   

  Matrix metalloproteinase-2 (MMP-2).       Mice lacking MMP-2 
are known to show bone loss and reduced bone density, and 
absence of MMP-2 effects later stages of fracture callus remod-
eling. 45  MMP-2, similar to SPARC, is found in both muscle as 
well as bone, and studies using cultured myotubes reveal that 
MMP-2 is actively secreted by myotubes  in vitro . 23,24  Insulin 
treatment of rat myotubes increases secretion of MMP-2, and 
serum levels of MMP-2 are elevated in diabetic patients suffer-

ing from hyperinsulinemia. 46  MMP-2 expression increases with 
exercise 47  and with re-loading following hindlimb suspension, 48  
and decreases with injury, 49  but is elevated in skeletal muscle 
following disuse. 50  These data show that MMP-2, like SPARC, 
has an important role in muscle tissue remodeling during vari-
ous repair events. The role of muscle-derived MMP-2 in bone 
metabolism is also unclear, but muscle-derived MMP-2 could 
potentially couple both muscle and bone turnover ( Table 1 ).   

  Bone morphogenetic protein-1 (BMP-1).      BMP-1 is not a 
true bone morphogenetic protein but rather is a protease that 
cleaves the propeptide fragments of procollagens I, II and III. 51  
BMP-1 is secreted from cultured primary human myotubes 
 in vitro , 31  and its secretion is decreased in rat myotubes 
exposed to very high contractions of insulin. 46  Recently, high 
levels of BMP-1 protein and mRNA were detected in muscle 
biopsies from patients who had experienced blast trauma in 
the combat setting. 52  This is significant from the perspective 
of muscle – bone crosstalk because blast trauma is associated 
with a high incidence of heterotopic ossification, a condition 
where bone forms within muscle tissue. 52  Additional work is 
needed to better understand the role(s) of muscle-specific 
BMP-1 secretion in normal and pathological bone formation, 
but BMP-1 could represent a potential therapeutic target for the 
prevention of heterotopic ossification ( Table 1 ).    

 Inflammatory Factors that are Secreted from Muscle 
During Exercise  

 Interleukin-6, -7 and -15 (IL-6, IL-7, IL-15).   The term  ‘ myokine ’  
was originally coined in reference to IL-6, a factor that Pedersen 
and colleagues 28,53,54  determined was released from muscle 
during exercise, and had important effects on other tissues 
including the liver and adipose depots. Type I (slow-twitch) fib-
ers express high levels of IL-6, and IL-6 levels are increased 
in serum with exercise. 53  IL-6 can stimulate expression of the 
anti-inflammatory factor IL-10, and mice lacking IL-6 develop 
obesity and insulin resistance. 55  IL-6 is often considered a pro-
resorptive cytokine for bone, but mice lacking IL-6 do not show 
an osteopenic phenotype and IL-6 may facilitate bone formation 
during conditions of high bone turnover. 56,57  IL-7 is also widely 
considered to be an osteoclastogenic cytokine, 58  and IL-7 is 
actively secreted by muscle cells. 59  Interestingly, many of the 
studies cited above (for example, Chan  et al.  24  ,  Norheim  et al.  26  ,  
Henningsen  et al.  27 , Yoon  et al.  46 ) that utilized  in vitro  cultures 
of myotubes to characterize the muscle secretome failed to 
identify IL-6 and -7 in conditioned medium. These observa-
tions raise the possibility that there are other myokines left to 
be identified that may be discovered through novel alternative 
 in vivo  and  in vitro  approaches. Finally, IL-15 is highly expressed 
in muscle tissue and is upregulated following resistance exer-
cise. 60  Transgenic mice overexpressing IL-15 in skeletal muscle 
that show elevated circulating IL-15 levels also show decreased 
fat mass and increased bone mass. 61  Importantly, these mice 
did not differ in lean mass or body weight from normal controls, 
suggesting that the increased bone mass was not due to any 
alterations in mechanical factors.    

 Summary and Future Research 

 A paracrine role for skeletal muscle is not necessarily a new 
concept, as experiments where skeletal muscle was trans-

    Table 1     Growth factors, cytokines and other peptides secreted by muscle, 
the factors that influence their secretion and their potential effects on bone 
metabolism 

    Muscle-
derived 
peptides  

  Factors that stimulate 
peptide secretion
  

  Role(s) in bone 
metabolism
  

    Growth factors  
       IGF-1   Resistance exercise  Stimulates bone forma-

tion 
       FGF-2   Eccentric muscle con-

traction 
 Stimulates bone forma-
tion 

       GDF-8   Muscle damage, 
cachexia, atrophy 

 Suppresses chondrogen-
esis and fracture healing 

        
    Extracellular matrix molecules  
       SPARC   Resistance exercise, 

muscle regeneration 
 Promotes bone minerali-
zation 

       MMP-2   Resistance exercise 
and re-loading 

 Fracture callus remod-
eling, bone formation 

       BMP-1   Blast trauma to muscle  Cleaving of procollagen 
and possibly heterotopic 
ossification 

        
    Inflammatory cytokines  
       IL-6   Physical activity and 

muscle contraction 
 Bone resorption and 
turnover 

       IL-7   Physical activity and 
muscle contraction 

 Bone resorption 

       IL-15   Resistance exercise  Increase bone mass, 
decrease adiposity 

     Abbreviation: IL, interleukin.   
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planted into cardiac tissue have revealed that skeletal muscle 
implants are a source of trophic factors supporting the survival 
of surrounding myocardial cells. 62  The paracrine and endocrine 
effects of muscle on bone are, however, only now beginning 
to become more well defined. We are at a very early stage in 
our understanding of how the muscle secretome impacts bone 
and other organs, and hence a number of outstanding ques-
tions remain. These include questions as to how muscle-derived 
factors impact particular cell types. For example, how do fac-
tors secreted from myocytes during muscle contraction and 
muscle hypertrophy influence bone resorption by osteoclasts, 
bone formation by osteoblasts or the adipogenic differentiation 
of bone marrow-derived stem cells? Similarly, how do various 
modes of muscle contraction, such as concentric vs eccentric 
contraction, alter myokine expression or secretion? Finally, how 
do unloading, microgravity or prolonged bedrest impact the 
muscle secretome? 

 These questions all point to the larger issue of how muscle 
activity and metabolism impact the overall systemic environ-
ment to which cells of bone and other tissues are exposed. For 
example, it is clear that exposing muscle of aged animals to 
circulating factors from younger animals improves the regen-
erative capacity of muscle. 63  Alternatively, how do changes in 
muscle, be they catabolic or anabolic, alter the systemic milieu 
to affect other organs such as bone? Preserving muscle mass 
decreases mortality and improves survival in tumor-bearing 
mice, 64,65  and loss of lean mass is an important predictor of 
health outcomes following burns and with chronic wounds. 66,67  
The positive effects of muscle mass on health outcomes are 
related at least to the fact that muscle is the primary source of 
free amino acids in the body; 68,69  however, it is also likely that 
certain myokines may also have a role. For example, treatment 
of a tumor cell-line with mouse serum following exercise, or with 
conditioned medium from myotubes following electrical stimu-
lation, reduces tumor cell proliferation and increases apopto-
sis. 70  These effects of muscle-derived serum and media on 
tumor cells were attributed to the fact that myotubes secrete the 
anti-tumor protein oncostatin M. 71  This finding has significant 
implications for cancer and bone (for example, osteosarcoma), 
and future studies might be directed at elucidating the interface 
between myokines, metastasis of cancer to bone and tumor 
growth in bone tissue. 

 Another outstanding question concerns the interactions of 
muscle-derived factors with organs other than bone. Skeletal 
muscle hypertrophy and hyperplasia increase serum IGF-1 
levels in mice lacking myostatin. The increase in circulating 
IGF-1 levels is associated with elevated liver-derived IGF-1 
in these mice with no change in muscle-specific IGF-1 
expression. 71  Thus, heritable variation in muscle mass has 
the potential to dramatically alter growth factor production by 
other organs, which is likely to have broad systemic effects on 
tissues such as bone and cartilage. Exercise has recently been 
shown to increase secretion of follistatin by hepatocytes, 72  and 
 follistatin is a potent inhibitor of both activin and myostatin, 
factors that suppress muscle hypertrophy and impair muscle 
regeneration. Follistatin also increases osteoblast mineraliza-
tion  in vitro , 73  raising the possibility that interactions among 
myokines and hepatokines may influence bone metabolism 
both directly, through their effects on bone cells and indi-
rectly, by modulating growth factor and cytokine production 
in other organs. A similar relationship may exist between 

muscle and fat, where myokines can induce lipolysis, 74  that 
would presumably affect circulating levels of adipokines such 
as leptin, which can in turn significantly alter bone formation 
and resorption. 

 In conclusion,  in vivo  and  in vitro  studies now demonstrate 
that muscle can function as an endocrine and paracrine organ. 
The factors secreted by muscle may vary according to muscle 
activity, such as concentric and eccentric contraction, disuse or 
damage in the form of traumatic injury. Factors actively secreted 
by muscle range from growth factors to inflammatory cytokines, 
and these peptides have the potential to alter bone metabolism 
in a variety of ways. Additional research is needed to better 
define the molecular and cellular pathways through which 
muscle-derived factors affect different types of bone cells, and 
anabolic and catabolic processes, in bone tissue. Nevertheless, 
the studies reviewed here further underscore the complex nature 
of muscle – bone interactions, and highlight the importance of 
integrating muscle biology and physiology into our understand-
ing of bone growth, development and aging.   
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