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ABSTRACT
Direct numerical simulation is performed to the flows in a channel with a cosine-
shaped dimple on the lower wall. Flow structures due to the dimple are studied at
eight different Reynolds numbers ranging from 50 to 3000, corresponding to laminar,
transitional and turbulent flows. The instability is triggered at Reynolds number
around 1000. As Reynolds number increases, the separation region in the cavity of the
dimple becomes big, and the pressure on the rear part of the cavity increases, resulting
in the enhancement of the pressure drag. At the transitional Reynolds number, the
instantaneous flow field exhibits an apparent periodic character, and the three
different flow patterns are found at the three different characteristic frequencies,
respectively.

1. INTRODUCTION
A variety of techniques used to enhance heat transfer and mixing of materials, for example, pin fins,
dimpled surfaces, surfaces with protrusions, ribbed turbulators, swirl chambers, and surface roughness
are reviewed by Ligrani [1]. Among these techniques, dimpled surfaces show about the same
performance as the conventional ribs and pins while the increase of total drag is lower. In recent years,
surfaces imprinted with dimples are studied extensively by a lot of researchers through both experiment
measurement and numerical simulation. However, we still lack of consensus knowledge on the flow
structures associated with the dimpled surface, especially the secondary flow and its unsteadiness
which play a critical role in practical application of this technique.

The flow in a channel with dimpled walls depends on the following parameters: the maximum depth
(h) and the print diameter (D) of the dimple, the channel half width (H), the bulk mean velocity (U) and
the kinematic viscosity of the fluid (ν). For the incompressible fluid considered in the present study, the
density ρ is considered as a known constant. According to the dimensional analysis, the flow is
determined by three independent dimensionless parameters, which can be selected as the ratio of the
dimple print diameter to the channel half width D* = D/H, the ratio of the dimple depth to the diameter
ε = h/D and the Reynolds number Re = U H/ν.

The influence of D* on the flow structures in the dimpled channel flow has been studied by
Ligrani [2] and Mahmood [3] experimentally at ε = 0.2. They identified a primary vortex pair which
is periodically shed from the central portion of each spherical dimple, and two additional secondary
vortex pairs which form near the spanwise edges of each dimple. Their results show that the
strength of the primary and the secondary vortex pairs increase with D*. Won [4] experimentally
studied the effects of ε on flow structures over a dimpled wall in a rectangular channel. As ε
increases, the produced vortices become bigger and stronger and the turbulent transport capability
is enhanced. They also found that the non-dimensionalized ejection frequency of the primary vortex
pair, and the oscillating frequency of the edge vortex pair both decrease with Reynolds number,
regardless of what ε is.

Various numerical simulations have been conducted to the flows over dimpled surfaces. Wang [5]
performed simulation to the laminar flow and found the “horse-shoe vortex” inside a single dimple. A
realizable k–ε turbulence model was used by Park [6, 7] and Won [8] to predict the fully turbulent air
flow in a channel with deep dimples. The centrally located primary vortex pair and the edge-located
secondary vortex pair have been caught successfully in their steady RANS (Reynolds Averaged Navier



Stokes) simulations, but the unsteadiness of the flow structures failed to be grasped. Wang [9] and
Elyyan [10, 11] performed direct and large eddy simulations to the flow over the surface with dimple
arrays, and mainly focused on the changes in the turbulence statistics and the enhancement of heat
transfer, respectively.

In the present study, our main concern is the influence of the Reynolds number on the flow structures
due to a single dimple. Hence the dimple with fixed D* and ε is employed and is placed on the lower
wall of a plane channel. The direct numerical simulations at different Re are performed, covering the
range of laminar, transitional and turbulent flow regimes, to obtain a systematic knowledge about the
influence of Reynolds numbers on flow structures due to a dimple.

2. NUMERICAL METHOD
The flow of incompressible Newtonian fluid in a channel with dimpled walls is governed by the Navier-
Stokes equations and the continuity equation. The equations non-dimensionalized by the bulk mean
velocity U and the channel half width H are

(1)

(2)

In the streamwise (x or x1) and spanwise (z or x3) directions, the flow is assumed periodic. In the
vertical direction (y or x2), the no-slip condition is used at the walls.

The locations of the upper and lower walls can be represented by y = 1 + ηu and y = −1 + ηd,
respectively. Here ηu and ηd represent the amount of the deformation of the corresponding walls. The
computational coordinate system ξi is defined so as to

(3)

in which η = (ηu − ηd)/2, and η0 = (ηu + ηd)/2. In the computational space, the upper and lower walls
are located at ξ2 = 1 and ξ2 = −1, and the velocity conditions at the walls can be written as

(4)

(5)

By the above coordinate transform, the spatial derivatives can be represented by

(6)

in which φi = ϕi − δi2, and

(7)

The flow quantities in computational space are represented by the expansions of Fourier series and
Chebyshev polynomials. Hence for spatial discretization of the governing equations, Fourier-Galerkin
method is used in the streamwise and spanwise directions, and Chebyshev-Tau method is adopted in
the wall-normal direction. The extra terms due to the coordinate transform are iterated by a modified
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Newtonian iteration method. The third-order time-splitting method is employed for time advancement.
For more details see Ge [12].

The turbulent channel flow with a static wavy wall is first simulated and compared with the
experimental measurements by Hudson [13] and DNS results by Cherukat [14] to validate the code.
The lower wall is set to be sinusoidal in streamwise direction, and the upper wall is flat, i.e.

(8)

In our simulation, the amplitude of wall deformation is chosen to be a = 0.1, and the wave length is
λ = 2, which is in accordance with Hudson’s experiments. The Reynolds number based on bulk mean
velocity and channel half width is set to be 3380 to match the experiments. The size of the
computational domain is 8 × 2 × 4 in the streamwise, vertical and spanwise directions, respectively, and
64 × 65 × 64 grids are used accordingly.

The distributions of the mean velocity and the root-mean square of the velocity fluctuations along
the vertical direction at two different streamwise locations (crest and trough) are shown in Fig. 1 and
Fig. 2. Hudson’s [13] experimental and Cherukat’s [14] numerical results are also shown for
comparison. The present results are very similar to Cherukat’s numerical results, and they are all in
good agreement with Hudson’s experimental measurements.

3. RESULTS AND DISCUSSION
3.1. Computation Settings
A cosine-shaped dimple is imposed at the centre of the lower wall with D/H = 1.0 and h/D = 0.2 while
the upper wall is smooth (see Fig 3). The dimple profile can be described by

(9)η
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Figure 1. Distribution of mean velocity at (a) crest and (b) trough locations.
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Figure 2. Root-mean square of velocity fluctuations at (a) crest and (b) trough locations.



where r = [(x – x0)
2 + (z – z0)

2]1/2, (x0, z0) is the centre of the dimple at the plane of the channel floor.
The computational domain is 2π × 2 × π in the x, y, and z directions. The simulations are starting from
the laminar plane Poiseuille flow, and the flow rates are kept constant during the development of the flow
by adjusting the driving pressure gradient every time step according to the friction and pressure drag.

Eight cases at different Reynolds numbers ranging from Re = 50 to 3000 have been simulated. The
grids of 64 × 65 × 32 are used in the cases of lower Reynolds numbers ranging from 50 to 1700, and
higher resolution in vertical direction with 64 × 129 × 64 grids are adopted for the higher Reynolds
number flows.

3.2. Laminar Flow
For the Reynolds number ranging from 50 to 750, the flows keep laminar. In the following, the flow
structures and the drag due to the dimple in this laminar flow regime will be shown at Re = 50, 250,
500 and 750.

The second invariant of velocity gradient tensor, Q = (||Ω||2 − ||S||2)/2, is a widely used flow quantity
to show vortical structures, in which Ω is the rotation tensor, and S is the tensor of strain rate [15]. In
the region of Q > 0, the rotation dominates over the strain rate, and hence the iso-surfaces of positive
Q can be used to identify and visualize the strong vortical structures. Fig. 4 shows the iso-surface of 
Q = 0.2. Arc structures are generated at the leading and rear edge of the dimple, where the flow is
entering and leaving the dimple cavity. Fig. 4 indicates that the intensity of the arc structures becomes
weaker with the increase of the Reynolds number. In order to reveal the structures more clearly, the
streamlines in the vertical plane (x–y) across the centre of the dimple are shown in Fig 5. At the lowest
Reynolds number, Re = 50, no flow separation and recirculation can be observed in the dimple cavity.
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Figure 3. Computational domain and coordinate system. (a) Vertical plane through dimple
centre and (b) global view.
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Figure 4. Flow structures shown by iso-surfaces of Q = 0.2 for (a) Re = 50, (b) Re = 250, (c)
Re = 500 and (d) Re = 750.



However, with the increase of the Reynolds number, the flow starts to separate at the leading edge of
the dimple. The shear layer in the separation region is drawn into the dimple cavity by the vortex and
then reattaches downstream. The intensity of the vortex in the dimple cavity becomes stronger with the
separation becomes bigger. At Re = 750, the fluids flow over the separation domain smoothly, and the
edges of the dimple seems to have little influence on the main flow.

The origin of the drag at the dimpled surface is analyzed. The total drag acting on the lower wall
consists of the friction drag and the pressure drag. For an element of the wall surface

, the unit vector in its normal direction is

The friction force and pressure force per unit projected area on (x, z)-plane are

(10)

and

(11)

The averaged pressure on the upper flat wall is set to be zero. and

are used to characterize the influence of the dimple on the friction force and pressure

force. Here and represent the friction and pressure drag per unit area on the dimpled

lower wall, and , which is taken as a reference in the present study, is the averaged friction drag
in a flat channel at the same Reynolds number.

Contours of are shown in the Fig 6. The region with reduced friction
drag almost occupies the whole dimple cavity, and those with enhanced friction appear near the leading
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Figure 5. Streamlines in (x–y) plane across dimple centre at (a) Re = 50, (b) Re = 250, 
(c) Re = 500 and (d) Re = 750.



and rear edge of the dimple. The density of the contour lines increases with Reynolds number in both
the lower and the higher friction regions, indicating that with the increase in Re, the friction reduction
in dimple cavity and enhancement near dimple edges are both amplified. The influence of the side
edges to the friction drag is not significant.

Contours of are shown in Fig 7. At Re = 50, the positive and negative pressure
drag per unit area reveals an upstream-downstream symmetrical distribution relative to the dimple
centre, and hence the averaged pressure drag is small, as shown in Fig. 8. As the Reynolds number
increases, the pressure drag in the left positive region is intensified, while that in the right negative
region is attenuated, resulting in the increase of the averaged pressure drag, as seen in Fig. 8. At 
Re = 750, the positive pressure drag even appears in the right negative region of the dimple cavity.

The ratio of the averaged pressure drag to the total drag is shown in Fig 8. It is clear that the
contribution of the pressure drag to the total drag is obviously increased as the Reynolds number
increases.

3.3. Turbulent Flow
When the Reynolds number exceeds about 1000, transition is triggered and the flow becomes turbulent.
Turbulence statistics are obtained by time averaging over about 1000 instantaneous flow realizations.
The mean flow structures as well as the unsteadiness of the instantaneous flow structures due to the
dimple will be discussed in the following.

3.3.1. Mean Flow Structures
The iso-surface of Q = 1.0 are shown in Fig. 9 for the higher Reynolds number cases. Arc structures
generated at the rear and front edge of the dimple are much strongger than those in the laminar flows.
At Re = 1500, the vortex inside the dimple cavity becomes strong enougth to be identified by the iso-
surface of Q = 1.0. With the increase in Reynolds number, both the arc vortices at the rear and leading
edge and that inside the cavity of the dimple becomes strongger and stronger.

Streamlines in the x–y planes across the centre of the dimple are shown in Fig 10. The dimple is fully
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filled with the separation vortex. As the Reynolds number increases, the core of the vortex is gradually
pushed downstream by the mean flow, and the space for the downwash flow in the dimple cavity is
squeezed. Therefore the downwash flow is accelerated, causing the centre of the low friction region
gradually moving to the back wall of the dimple, as can be seen in Fig 11.

Contours of are shown in Fig. 12. As the Reynolds number increases, the core of
the vortex inside the dimple cavity moves downstream, and a positive pressure drag region appears in
the right part of the dimple cavity, which is occupied by the negative pressure drag in the laminar flow
cases, as shown in Fig. 7. Therefore the pressure drag in turbulent cases is far larger than that in laminar
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cases.
The ratio of the averaged pressure drag to the total drag is shown in Fig. 8 at different Reynolds

numbers. It can be seen that as the Reynolds number increases, the contribution of the pressure drag to
the total drag grows quickly. At Re = 3000, its proportion is even larger than 50%, indicating that at
higher Reynolds numbers the pressure drag is dominant over the friction drag.

3.3.2. Instantaneous Flow Structures
The unsteadiness of flow structures due to dimples was studied experimentally by Ligrani et al [2].
They used the spherical dimple array with D* = 2, 4 and 8, and found the continuously periodic
shedding of the primary vortex pair from the central portion of each dimple at Re = 300~5500. In the
present study, the different unsteady flow structures have been identified at different characteristic
frequencies. The unsteadiness of the flow structures will be described in the following, and the
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Figure 9. Flow structures shown by iso-surfaces of Q = 1.0 for (a) Re = 1000, (b) Re = 1500,
(c) Re = 2000 and (d) Re = 3000.
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Reynolds number effect will also be discussed.
A fictitious probe is put in the flow field just behind the dimple at ∆x = 0.785, ∆y = 0.23, and ∆z

= 0, as shown in the insertion of Fig. 13(a). Here ∆x and ∆z refer to the streamwise and spanwise
distance to the print centre of the dimple, and ∆y is the distance to the wall. Fig. 13 shows the time
history of the instantaneous streamwise velocity detected by the probe at Reynolds number 1000,
1500 and 3000. At Re = 1000, the instability is developed in the flow, and the streamwise velocity
signal exhibits an obviously periodic characteristic. However, in the whole time range, there is not
an unique dominant frequency, because the period changes with time. At Re = 1500, the signal
becomes more random, and the periodic characteristic is weakened. At Re = 3000, the flow becomes
fully turbulent.

The unsteady flow structures at Re = 1000 is studied in more detail because of its obvious
periodicity. By scrutinizing the flow signals carefully, we found that in the whole time interval between
t = 500 to 1000, there appears three different frequencies, namely f = 0.15, 0.31 and 0.20, corresponding
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to the time segments of [540, 580], [700, 740] and [950, 990]. The time histories of the streamwise
velocity in the three different time segments are shown in Fig. 14, the corresponding frequency spectra
are also included in the figure. The flow patterns are described by the streamlines around the vortex
core at seven different phases in one period. The vortex core is identified by the extreme negative
values of λ2, which is the second eigenvalue of the tensor of S2 + Ω2 [15].

During t = 540~580, the dominant frequency is f = 0.15, as shown in Fig. 14(a). The corresponding
flow pattern is shown in Fig 15. Seven different time instants are selected in a period, as indicated in
the top-left figure in Fig. 15. The fluid flows into the dimple from one side of the leading edge of the
dimple, and a spanwise vortex forms in the dimple cavity, which throw the injected fluid up and out of
the cavity from the side edge of the dimple (Fig. 15A). As the flow develops, the head of the vortex
raises and the line of the vortex core turns clockwise (Fig. 15B-E). At the same time, the vertical
component of the vortex take the fluid up from the bottom of the cavity, and then the fluid is mixed
with the outer flow and shed from the middle of the dimple rear edge (Fig. 15E). After that, new fluid
assembles in the cavity of the dimple and a new spanwise vortex forms there (Fig. 15F-G), starting a
new cycle.

During t = 700~740, the dominant frequency is f = 0.31, as shown in Fig. 14(b).The flow pattern
at this frequency is shown in Fig 16. The fluid flows into the dimple cavity from the two sides of
the leading edge, a Λ-vortex consisting of two counter-rotating legs is formed there (Fig. 16A). The
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Figure 14. Time history of streamwise velocity (left) and frequency spectrum (right) at 
Re = 1000. (a) t = 540~580, (b) t = 700~740, (c) t = 950~990.



Λ-vortex throws the injected fluid out of the cavity in the middle of the rear edge of the dimple 
(Fig. 16A–C). As the flow develops, one of the two vortex legs (the right leg in this case) becomes
weaker and weaker, and the stronger one (the left leg) begins to align in the streamwise direction
and dominates the flow in the dimple cavity. The fluid is entrained into the cavity from one side of
the leading edge, and is threw out of the cavity from the other side of the rear edge (Fig 16D–F).
The imbalance between the two legs cannot last any longer. Under the influence of the outer main
flow, the dominant vortex leg gradually withdrawals to its former position, and a new counter-
rotating vortex leg is generated and grows gradually, thus, the new Λ-vortex forms again (Fig. 16G).

During t = 950~990, the dominant frequency is f = 0.20, as shown in Fig. 14(c). The corresponding
flow pattern at this frequency is shown in Fig. 17. It is characterized by a relatively stable spanwise
vortex. With the influence of the external flow, the fluids may be entrained into the cavity from one side
of the leading edge and threw out of the cavity from the other side of the trailing edge, as shown by
Fig. 17C and 17F, or get into the dimple in the middle of the leading edge and leave at the two sides of
the trailing edge, see Fig. 17E. This pattern occurs later in time, and resembles the averaged flow
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to f = 0.15 at Re = 1000.



structures much more than the other two patterns.
At Re = 1500, the flow becomes more complex. The three flow patterns can still be identified.

However, because of the random signals of the flow field, the patterns are not as clear as those in the
low Reynolds number case. As the Reynolds is increased to 3000, the flow becomes fully turbulent.
The streamwise vortices shedding from the dimple cavity, similar to that described by Ligrani et al [2],
can be clearly observed.

It is worth to note that the three characteristic frequencies identified in the present study is much
higher than the shedding frequency of the primary vortex pair observed in Won et al [4]’s
experiment. The most probable reason is that our simulation is focused on a single dimple, while
their experiments were performed for a stagger-arranged dimple arrays. The print diameters are also
different. In our simulation, D* is fixed to be 1, while it is 2 in their experiments. Isaev et al [16]
performed RANS simulation to a spherical dimple at a much higher Reynolds number. Although the
unsteadiness cannot be predicted in their simulation, the counter-rotating streamwise vortices in
dimple cavity observed in their simulation are similar to the two legs of the Λ-vortex identified in

Ming-Wei Ge, Chun-Xiao Xu and Gui-Xiang Cui 79

Volume 4 · Number 1+2 · 2012

1.2

1.4
(a)

y x
z

1

0.8u
0.6

0.4

0.2
726 728 730 732 734 736 738

t

F

E

G

B

D

C
A

(c)(b)

(d) (e)

(f) (g)

y x
z

y x
z

y x
z

y x
z

y x
z

y x
z

Figure 16. Streamlines and vortex cores at 7 different phases in one period corresponding
to f = 0.31 at Re = 1000.



the present work.

4. CONCLUSION
Direct numerical simulation of the flows in a channel with a dimple at the lower wall was made at
different Reynolds numbers ranging from 50 to 3000. The dimple is cosine shaped with the fixed print
diameter equal to the channel half height and a depth of 0.2 print diameter. The Reynolds number effect
on the flow structures and drag composition is studied.

At the Reynolds number lower than 1000, the flow keeps laminar. Arc structures are generated at the
leading and trailing edge of the dimple. With the increase of the Reynolds number, the arc structures
become weaker, the vortex in the dimple cavity becomes stronger and the separation region becomes
bigger, resulting in the enhancement of the pressure drag.

As the Reynolds number increases beyond 1000, the flow instability is triggered, and the flow
gradually becomes turbulent. In the mean flow, the arc structures generated at the rear and front edges
of the dimple and inside the dimple cavity are much stronger than those in laminar flows. The strength
of the vortices is enhanced when the Reynolds number increases. As the separation bubble expands in
the cavity, a local high pressure drag region appears in the rear part of the dimple cavity, and causes the
drastic increase in the pressure drag.

At Re = 1000, three different flow patterns are identified at three different frequencies of 0.15, 0.31
and 0.20. At the frequency of 0.15, the flow inside the cavity is characterized by an periodic erection
of the spanwise vortex, at the frequency of 0.31 it is dominated by a Λ vortex, and at the frequency of
0.20 a relatively stable spanwise vortex survives. At even higher Reynolds numbers, the three flow
pattern still exist. When the Reynolds number reaches 3000, the flow becomes fully turbulent, and the
cyclinic shedding of streamwise vortices from the dimple cavity can also be observed.
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