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1. INTRODUCTION
Disc brake squeal is a high-frequency
noise due to friction-induced vibration.
There has not been a universally
accepted definition of squeal [1]. It is
generally agreed that squeal is a
sustained noise above about 1 kHz and it
involves flexible modes of the disc.
During a squeal event, there is no
apparent sticking between the disc and
pads. Usually a single tone dominates.

There is a wealth of literature on
disc brake squeal. One cannot cover all
of it within the space of this paper.
Kinkaid et al. [1] recently conducted a
comprehensive review on disc brake
squeal. That paper is a valuable source of
information for both new and
established researchers in this field.
Akay recently published another review
paper covering a wider area of friction
acoustics [2]. 

In order to understand how a disc
brake operates, a typical disc brake is
displayed below. The disc is bolted to
the front axle and rotates at the same
speed as the front wheel. The pads are
enclosed by the carrier bracket in the
horizontal plane (parallel to the disc
plane) and housed in the calliper. The
calliper, in a floating calliper design
which is the subject of this paper, can
slide fairly freely in the axial direction
(normal to the disc plane) through the
guide pins along the bores in the carrier
bracket. When the brake is applied, the
hydraulic pressure moves the piston
forward which in turn pushes the
inboard pad against one side of the disc.
At the same time, the reaction force
from the disc brings in the outboard
pad, through the calliper (fingers),
against the other side of the disc. This
squeezing action produces a frictional

torque that slows down and stops the
wheel.

In an opposed-piston design, there
is a piston (or pistons) housed in either
side of the calliper. When the brake is
applied, the hydraulic pressure brings
the pistons forward and which in turn
push the pads against both sides of the
disc.

Friction is essential in the
functioning of a disc brake. In addition,
friction is also capable of generating a
wide spectrum of noise, including the
annoying squeal noise of 1 kHz – 20
kHz. 

Why is it very difficult to study disc
brake squeal and remove it? There are
various difficulties. (1) The physics of
friction under dynamic loading is not
fully understood. It is a nonlinear
phenomenon. It depends on the local
normal force, the relative velocity
between two mating surfaces,
temperature and humidity, surface
roughness which is a random variable,
wear which is itself very difficult to
measure and quantify, and other factors.
It also depends on loading and thermal
history. Of course, no models to date can
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take into all the above factors. (2) The
contact between the disc and the pads is
dynamic and the contact interface
moves temporally and spatially. The
contact is closely related to friction and
is equally difficult to study. (3) There are
a number of contact interfaces in a disc
brake system, for example, between the
inboard pad back plate and the piston
head, between the ‘ear lugs’ of the pad
back plate with carrier abutments.
These contacts depend on local pressure
that is unknown a priori. Pads are
loosely held in the calliper housing and
within the carrier bracket. These
boundary conditions for the brake
components are highly circumstantial
and again are not fully known
beforehand. (4) Pads are nonlinear,
temperature dependent, viscoelastic
material. The braking fluid also
possesses unknown nonlinear material
properties sensitive to temperature
variations. 

Despite that the knowledge of
friction and dynamic contact is still not
complete and that there is a considerable
uncertainty in the material properties
and boundary conditions, disc brakes
must be designed to satisfy customer
demands. Customers believe that a

squealing brake indicates poor quality
and reliability of the vehicle. This
perception drives up warranty cost. The
warranty cost owing to the NVH issues
(including disc brake squeal) was
recently estimated to be about US$1
billion a year to the automotive industry
in North America alone [2].

Experimental study has been a
major means of investigating disc brake
squeal problem, but numerical
modelling and computer simulation of
disc brake squeal is coming to be
preferred. Compared with the
experimental study, numerical
modelling and simulation has the
following advantages: (1) it is much
quicker and cheaper to build numerical
models and run simulations, (2)
conceptual ideas can be numerically
tested to evaluate the merits and pitfalls
before a physical model is built, (3) there
are virtually unlimited kinds of
structural modifications to be studied.
Consequently an optimised design may
be found. Ouyang et al. [3] recently
reviewed these theoretical methods. 

As mentioned before, squeal is a
result of friction-induced vibration.
The friction, acting in the tangential
plane of two contacting surfaces, has

fingers

    carrier

vented disc

guide pin carrier       calliper

carrier

outboard pad

inboard padpiston
housing

Figure 1 Two views of a typical floating-calliper disc brake and components
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been observed to excite large-amplitude
transverse (normal to the contact
interface) vibration. The hypotheses of
the ways whereby the tangential
friction excites transverse (and trivially
the tangential) vibration are called
squeal/friction mechanisms. There are a
number of squeal mechanisms. They
were reviewed in [1] and are not
covered in this paper. A particular
squeal mechanism is presented in this
paper.

2. FIVE MODELLING ISSUES

2.1. THE MOVING LOAD CONCEPT
The disc rotates past the non-rotating
pads. As such, the pads are mating with
different areas of the disc at different
times. Because squeal tends to occur at
low disc speeds, it is natural for people
to omit this moving contact. It is shown
in this paper that this relative motion
between the disc and the pads may be
important and its effects on the noise
behaviour should be known. The author
and his colleagues recently put forward
a moving load model for disc brakes and
the numerical results indicated that the
dynamic stability (or instability) was
indeed affected by the relative gross

velocity between the disc and the pads
[4, 5]. The moving-load concept will be
explained in the next section.

2.2. CONTACT ANALYSIS
Due to the friction forces acting at the
disc and pads interface, the interface
pressure distribution is highly uneven
and biased towards the leading edge of
the pad back plate [6]. Furthermore,
part of the disc and pads interface even
loses contact [6]. It has long been
speculated that the interface pressure
distribution affects the squeal
propensity. The current industrial
approach contains a two-step analysis
procedure: a nonlinear, static contact
analysis to determine the interface
pressure distribution followed by a
complex mode analysis to determine the
dynamic instability represented by the
positive real parts of the complex
eigenvalues [5, 7-10]. This strategy is
also kept in this paper.

2.3. CONTACT INTERFACE MODEL
Under pressure and friction, there are a
large number of small, localized areas
undergoing plastic deformation and
high temperature variation at disc and
pads interface. The disc is energised at
this interface. Thus it is very important

noise notes volume 3 number 3

HYDERABAD NIGHTFLIGHTS

Incidence of sensory neural deafness is on a rise among residents in areas surrounding

Begumpet airport, Hyderabad, thanks to the noise pollution from the flights even during the

night time. There has definitely been a rise in cases of sensory neural deafness because of the

noise pollution, senior consultant, ENT surgeon, claims Dr Venu Gopal Reddy who works at

Krishna Institute of Medical Sciences. People exposed to more than 90 decibels of sound for

two or three hours every day suffer damages in the hair cells in cochlea (organ for hearing).

The damage of these cells is permanent and causes deafness, he said. In areas surrounding

the airport about two to five kilometres, the level of sound is about 90 decibels for about

eight hours per day. Moreover, most international flights operate only in the night and the

sound is unbearable during landing and take off, president of Save Secunderabad

Environment Committee, captain S Vijay Kumar said. The permissible standards are 55 db for

normal working place and 90 db for eight hours in factories.

noise notes

Noise Notes 3-3 final  05/01/05 1:53 pm  Page 13



l o w  f r e q u e n c y
n o i s e  p e r c e p t i o n

to model it. In Liles and Nack’s method,
a number of springs are installed at the
disc and pads interface, representing the
contact stiffness [7-10]. Yuan [11] put
forward a general formulation for any
type of finite element for the contact
interface. Ouyang et al. [5] used a thin
layer of solid elements with pressure-
dependent Young’s moduli. 

2.4. FRICTION LAWS
Many people may assume that
sophisticated friction laws should be
used in analysing disc brake squeal.
Kinkaid et al. [1] found that
sophisticated friction laws had not been
accepted by the brake community. The
reason is simple. Faced with such a
complicated system as disc brakes,
sophisticated friction laws may not
enhance accuracy. On the contrary, the
extra complexity and accumulated
computing errors may overwhelm the
limited benefit. It was also recognised
that a constant friction coefficient in
Coulomb’s friction law was sufficient to
bring about dynamic instability [12].
Therefore, the simple Coulomb’s
friction law is used in this paper.

2.5. SQUEAL MECHANISMS
It is crucial to use a right squeal
mechanism in the dynamic model of a
disc brake system. However, a
consensus on the right squeal
mechanism has not been reached yet.
An extended version of North’s idea of
friction couple [12] is used in this paper.

3. VIBRATIONS DUE TO MOVING
LOADS
This section consists of three parts. In
the first part, the solution of the
vibration of a beam under an external
harmonic load is described. The second
part introduces the moving-load
concept by means of a beam excited by a
moving mass. Finally, the vibration of a
circular plate subjected to a moving
mass is discussed.

3.1. FORCED VIBRATION OF A
SIMPLY-SUPPORTED BEAM
The equation of undamped, forced
vibration of an Euler beam of uniform
material and cross-section, as shown in
Figure 2, is

(1)

where ρ is the density, A the area of the
beam cross-section, I the second
moment of this area, E the Young’s
modulus and x0 is the spatial coordinate
where the harmonic load is acting,
whose amplitude is f and excitation
frequency ω, δ is the Dirac delta
function. It represents a concentrated
force located at x = x0 and has the
following property

(2)

where y is an arbitrary continuous
function of x. 

The natural frequencies of this
beam are

(3)

The transverse vibration w of the
beam can be expressed as a sum of its
modes as
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Figure 2. A simply-supported beam under a harmonic load
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(4)

where qj(t) is the modal coordinate
for the j-th mass-normalized mode ψj(x)
of the beam, which is

(5)

Substituting equation (4) into (1),
multiplying it by ψj(x)  (i = 1,2,...) and
then integrating the resultant equation
yields

(6)

According to linear vibration
theory, whenever the excitation
frequency is very close to any one of the
beam’s natural frequencies, that is, ω ≈
ωi, then the amplitude of w(x, t)
becomes very large and resonance
happens.

3.2. SELF-EXCITED VIBRATION
UNDER A MOVING LOAD
Next, the vibration of the same beam
excited by a moving (frictionless) mass
of m is considered. This structure is
shown in Figure 3. The mass starts to
move along the beam from x=0 at t=0 at
constant speed v. It reaches x = vt at an
arbitrary time t. 

The mass m exerts a transverse
inertial force of

where u(t) = w(vt, t) is the instan-
taneous deflection of the beam in
contact with m, and a constant weight
W. It is implied that there is no
separation between the mass and the
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Figure 3. A simply-supported beam subjected to a moving mass

ENFORCING THE NOISE ABATEMENT ACT

From the “Jamaica Gleaner”. The Christiana police must be commended for firmly enforcing the Noise Abatement Act

on New Year's Eve. At the receiving end of the law this time were members of a church who attended a Watchnight

service and gospel concert. The gathering filled the town's taxi stand and spilled over into the main road, creating yet

another problem for those who may not have wished to be unduly disturbed or hindered by the gathering and joyful

noise of the faithful. The event was hosted by the Spaldings Ministers' Fraternal and so came with the blessings of the

church organisation. Organisers wisely advised patrons that they would be conforming with the instructions from the

authorities as the Noise Abatement Act was a law of the land and should be observed by all, including the church. One

minister present noted that the church should set the example for others to follow. It is just a pity that the example

was not set before the intervention of the police to instruct that the concert be wound down by 2:00 a.m., well beyond

the specifications of the law.

noise notes
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beam even when the transverse
vibration of the beam becomes very
large. It is easy to see that

By analogy to equation (1), the equation
of transverse vibration of this beam is

(7)

Following the same steps described
in Section 3.1, equation (7) can be
converted to

(8)
By examining the first term on the

right-hand side of equation (8), one can
conclude (comparing it with equation
(6) if one is unsure) that when

(9)

resonance will happen. This is a distinct
result from the (conventional) forced
vibration represented by equation (1). It
means that a constant moving load may
cause resonance when the moving speed
of this constant load is right. While
under a non-moving load, resonance
can only occur when the external load is
oscillatory in time and at the same time
ω ≈ ωi. Resonance of the type dictated
by equation (9) is referred to as single-
mode resonances. 

What is more striking, though less
apparent, is that resonance can also
occur when any one of the four
following expressions holds,

(10)

The above formula can be derived
when considering the following
trigonometric identities

and going through a mathematically-
involved procedure. For details, one can
check [13]. This indicates that a moving
mass may excite resonances involving
two modes (thus called combination
resonances). This phenomenon will not
happen for the steady vibration excited
by a non-moving load with a single
excitation frequency. 

There can be other resonance
conditions. Since they have to be found
using rather tedious numerical
methods, they are not shown here. 

One can see that moving loads can
bring about interesting phenomena not
found in conventional vibrations due to
non-moving loads. Another way of
looking at a moving load problem is to
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Figure 4. Circulate plate and its coordinate system
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move some terms on the right-hand side
of equation (8) to the left. In so doing,
one can get three sets of terms on the
left-hand side as follows

(11)

Apparently the moving mass adds a
time-periodic mass (in the first set of
terms in equation (11)), damping (the
second set) and stiffness (the third set)
to the beam. In particular, damping
becomes negative as often as become
positive. It is no wonder that the
vibration of the beam can be
destabilised by a moving mass. 

Moving loads are very common in
engineering systems. Examples include
vehicle-bridge interaction, computer
disc and reader vibration, vibration and
chatter in machining, wood saws, train
wheel/rail squeal. Fryba’s monograph
[14] detailed analytical solutions of
many simple moving load problems.

3.3. VIBRATION OF A CIRCULAR
PLATE SUBJECTED TO A ROTATING
MASS
The equation of the transverse motion
of a thin, circular plate (in a cylindrical
coordinate system) subjected to a
frictionless mass m rotating around the
disc surface at a constant speed Ω is

(12)

where m is located at (r0, 0) at time zero.
h is the thickness and D the flexural
rigidity of the plate. The partial
differential operator is

Following the similar but more
complicated procedure to that of
Sections 3.1 and 3.2, the same
qualitative conclusions [13] can be
drawn on Ω about single-mode and
combination resonances as those in
Section 3.2.

4. MODEL OF A DISC BRAKE
SYSTEM

4.1. SEPARATE MODELS FOR THE
DISC AND THE STATIONARY
COMPONENTS
A brake disc has a large amount of cyclic
symmetry and is approximated as an
annular, thin plate. The pads, calliper,
carrier bracket and guide pins (together
known as the stationary components)
possess complicated geometry and must
be represented by a large number of
finite elements. Lumped-parameter
models of small numbers of degrees-of-
freedom will not predict squeal
frequencies well enough or give
unstable modes. This separate
treatment of the rotating disc (analytical
model) and the stationary components
(finite element model) was put forward
in [15] and can greatly facilitate the
implementation of the moving-load
concept in a disc brake model [4]. The
contact pressure at the disc and pads
interface is now represented by vector p
of nodal forces pi (i=1, 2, ..., number of
pads’ nodes in contact with the disc),
which are the normal dynamic forces
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Figure 5. Graphical explanation of the idea of North’s friction couple
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acting onto both surfaces (the disc and
pads interface) of the disc from the pads. 

4.2. FRICTION LAW AND SQUEAL
MECHANISM
Each normal force pi acting on the
surface of the disc from the pads
produces a tangential friction force µipi

from Coulomb’s friction law, where µi is
the dry friction coefficient at node i on
the disc and pads interface. Each
friction force acting on the disc surface
in the tangential direction can be
considered to produce a bending couple
about the central plane of the plate
(where the equilibrium is established),
shown in Figure 5, as

(13)

This particular way of
incorporating friction as a non-
conservative force is based on North’s
idea of the follower force [12].

4.3. VIBRATION OF THE DISC
The equation of the transverse vibration
of the disc, approximated as an annular,
thin plate, is [5]

(14)

The δ functions in equation (14)
indicates that pi (and Mi) initially sits at
the polar coordinate of (ri, θi) and then
moves to the new polar coordinate of (ri,
θi + Ωt) at time t. c is viscous damping
of the disc. All the pi (and Mi) must be
summed up as external forces acting
onto the disc from the two pads. pi now
reflects the dynamic force (inertia,
damping and elastic) of the stationary
components. Equation (14) may be
understood by comparing it with
equations (12).

4.4. VIBRATION OF THE STATIONARY
COMPONENTS
The equation of motion of the
stationary components using the finite
element method is

(15)

where M, C and K are the mass,
damping and stiffness matrices, and x
the displacement vector of the
stationary components respectively. The
dot over a symbol in equation (15)
represents the derivative with respect to
time. 

For a disc brake, the excitation
comes from the friction forces acting at
the moving disc and pads interface.
These moving friction forces and the
dynamic normal forces are internal to
the whole brake system. That is why
squeal is self-excited vibration. There is
no external force involved. One can
regroup the displacement and force
vectors in equation (15) into two
separate sets: xp for nodes of the pads in
contact with the disc and xo for all the
other nodes. Then one gets

(16)],[,],[ T
o

T
p

TT
o

T
p

T xxxfff ==

)(tfKxx·CẍM =++
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Figure 6. Finite element mesh of the stationary components
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where

(17)

and superscript ‘T’ stands for vector
(matrix) transpose. It also follows that

From equations (16)–(18), one can
derive a solution of equation (15) x(t)
in terms of p(t) in principle. Now select
all the w-displacements for those nodes
of the pads in contact with the disc and
form a new vector w. Then in theory
one can obtain [4, 5]

(19)

where A is a square matrix and λ is a
complex eigenvalue of the whole brake
system. 

4.5. COMPLEX EIGENVALUE
ANALYSIS
From equation (14), one can solve 
w(r, θ, t) in terms of p. The
displacement continuity at the disc and
pads interface requires that the normal
displacements of the pads and the
instantaneous transverse deflection of
the disc to be equal. Due to the relative

motion between the disc and the pads,
this requirement means

where B is a square matrix. By
combining equations (19) and (20), one
gets

which is a nonlinear eigenvalue
formulation.

A recent paper also presented a
linear complex eigenvalue formulation
for the dynamic instability analysis of
disc brake squeal with much larger
matrices [16].

5. RESULTS AND DISCUSSION
A typical disc brake, as shown in
Figure 1, is considered here. The finite
element model of the stationary
components has many thousand
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Table 1. Material data of the
stationary components

Components E(GPa) ν ρ(kg.m–3)
Calliper 187.63 0.3 7100
Carrier 170 0.3 7564
Others 210 0.3 7850
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Figure 7. Experiments-established noise frequencies
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Figure 8. Predicted noise indices versus frequencies
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degrees-of-freedom, as shown in 
Figure 6. 

The disc has the following
dimensions and properties: its inner
and outer radii are 0.045m and 0.133m,
E = 120GPa, ρ = 7200kh·m-3, Poisson’s
ratio ν = 0.211, h = 0.012m. 

The Young’s modulus of the friction
material depends on piston line
pressure and is in the range of 5.4 –
10.8 GPa. It is treated as an orthotropic
material (but ν = 0.3). The material
properties of other stationary
components are listed in Table 1.

The noise frequencies with level
above 80 dB obtained from
experiments are illustrated in Figure 7.
No piston line pressures or disc speeds
are recorded in the experiments, which
are from an external source.

Yuan [17] defined as 

noise index, where s and w are the real
and the imaginary parts of a complex
eigenvalue. The numerical results at
two speeds of Ω=0.01 rad/s (very slow
sliding) and Ω=6.2 rad/s are shown in
Figure 8.

Since no knowledge of disc speeds is
available in the experiments from an
external source, predicted results at two
different disc speeds are given. The

predicted unstable frequencies roughly
cover all the noisy experimental
frequencies, though the real parts do not
match the noise levels so well. The
correlation in the two sets of frequencies
would be even better if the numerical
frequencies were shifted down by about
200Hz. This should be a reasonable
adjustment, considering that the disc in
the model is bolted to a rigid ground
while it is bolted to an elastic
suspension in the experiment.

Another phenomenon to be
observed is that the predicted complex
eigenvalues at two different disc speeds
are quite different. This supports the
incorporation of the moving-load
concept into the modelling of disc
brake systems. To what extent the
moving loads affect squeal intensity
and occurrence rate in disc brakes
needs further investigations. 

It is recognised that the magnitude
of the real parts of the complex
eigenvalues indicates the growth rate of
the particular motions in a linear
model and does not necessarily indicate
noise intensity of squeal frequencies
[7], which can only be calculated from
a transient analysis of the
corresponding nonlinear model.
However, the complex eigenvalue

22 ωσ
σα
+

=  
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GLOVES OFF

The owner of Gold's Gym on Main Street in Vacaville is asking to open its doors one hour earlier, at 4 a.m., on weekdays.
The City Council first dealt with the issue in mid-July when a resident complained that the noise from gym patrons
talking and car doors slamming woke their family up in the early morning hours. After hours of discussion, the council
decided the owner, Rick Martindale, could apply to modify its hours with the planning commission. Again facing the
commission, both the owner of the adjoining building and local residents at Main and Cernon streets will oppose the
proposed gym hours. They say the foot traffic, patrons taking up street parking and excessive noise are problems for
many neighbours in the area. But Martindale says the hours are necessary for those who commute to the Bay Area. The
adjoining neighbour to the gym says he will not support the proposal unless a six-foot high masonry wall is constructed
along the Cernon Street side of the parking lot. Martindale, who contends that noise problems won't be heightened
with the new hours, has proposed his own modifications to the parking lot to reduce noise levels. Various analyses of
noise in the vicinity of the gym's parking lot show conflicting results. Martindale requested a report by Bollard &
Brennan, Inc., a consultant in acoustic and noise control, that shows the gym's parking lot has no impact on noise
measurements at the nearest residence. A conflicting report commissioned by neighbour Jo-Anna Camilleri-Olin shows
that "some activity is causing a rise in the ambient noise in the early morning hours" at the gym. This report was done by
Environmental Safety Associates, based in Florida.
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analysis provides a conservative
approach for assessing the system’s
dynamic instability. If no positive real
part is present in all the complex
eigenvalues, then the vibration will not
grow into limit-cycle oscillation and
squeal can be avoided [11]. 

CONCLUSIONS
This paper provides a detailed account
of the disc brake squeal problem and
the moving-load concept. It gives a
brief description on how moving loads
affect the dynamic instability of a
simple beam and a real disc brake
system. Numerical results of unstable
frequencies agree reasonably well with
experimental squeal frequencies.
Numerical complex eigenvalues at two
different disc speeds display significant
differences in both the real parts and
the imaginary parts. They indicate that
consideration of moving loads really
make a big difference in the predicted
dynamic behaviour of a disc brake
system
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WIND FARM NOISE

Of those questioned, living in the vicinity of Bear Downs wind farm, Padstow, Cornwall, 93% said their lives had been

adversely affected by the noise, with 70% reporting sleep problems and anxiety.
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