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Introduction
Southeast Asia (SEA) has a consistent role in the evolution of 
multidrug-resistant Plasmodium falciparum (P. falciparum) para-
sites.1-5 After genome-wide association studies in concordance 
with artemisinin resistance, several polymorphisms in the kelch 
protein were designated with artemisinin resistance.6-8 The 
propeller domain or propeller region located in the so-called 
highly conserved kelch protein gene within the chromosome 
13 is involved in ubiquitin-based degradation and parasite’s 
adaptation to oxidative stress.9 Three domains have been 
ascribed in the predicted structure of K13 kelch protein, i.e., a 
well-conserved Plasmodium-specific N-terminal domain, a 
BTB/POZ domain, and a C-terminal propeller domain which 
encode 6 canonical kelch motifs containing proteins that are 
evolutionary conserved across different species responsible for 
diverse cellular functions.9,10 Changes in the primary amino 
acid sequence due to mutations in these motifs have been iden-
tified as determinants of artemisinin resistance in SEA.11,12 
Mutations in kelch motifs cause upregulation of unfolded pro-
tein response pathways.13 Initially, a set of 20 different muta-
tions (ranging from amino acid codons 440 to 623) was 
established in vitro as signatures of artemisinin resistance in 
western Cambodia.8 But accumulation of data over time 

suggests that mutations in this gene vary geographically and 
mostly in accordance with the employed antimalarial regi-
mens.14-21 In a recent study, non-reference K13 mutations viz., 
584V, 580Y, 574L, 568G, 553L, 543T, 539T, 493H, 481V, 
449A, 255K, and 189T have been found involved in prolonged 
parasite clearance, and it was also stated that artemisinin resist-
ance in SEA has emerged independently without sweeping 
from Cambodia.22 In 2016, most of them became either vali-
dated or candidate K13 mutation for artemisinin resistance.23 
However, role of 584V, 481V, 255K, and 189T mutations in 
artemisinin resistance are yet to establish.

The artemisinin resistance epicentre Myanmar shares its 
Northwestern boundaries with Northeastern states of India. 
More precisely, it has been explained that C580Y, F446I, and 
P574L mutations along with other mutations in kelch propel-
ler domain associated with artemisinin resistance are collec-
tively spreading in a rapid manner towards upper Myanmar 
and extending up to regions near India.16 Also, F446I mutation 
has been considered as the most prevalent in China-Myanmar 
border than other mutations.24 Recently, G533A novel muta-
tion has been reported in P. falciparum isolates of Northeast 
region, India along with other non-synonymous S549Y, 
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R561H, and A578S mutations.20 However, no polymorphism 
in K13 propeller domain has been found among P. falciparum 
clinical isolates in another part of India where artesunate- 
sulphadoxine/pyrimethamine has been used as artemisinin-
based combination therapy (ACT) for malaria treatment.25 
Recently, it has been established that K13 polymorphisms 
associated with artemisinin resistance are not evident outside 
SEA and China, and moreover, mutant A578S mutation has no 
role in artemisinin resistance manifestation.26 Collectively, from 
different parts of the globe, more than 200 non-synonymous 
mutations in PfK13 propeller domain have been reported, and 
mutation in this domain is still evolving.23 However, not all 
non-synonymous mutations are indications of emergence of 
artemisinin resistance. Resistance to ACT cannot be stated 
easily in malaria endemic regions where ACT is the first-line 
treatment against malaria. It also depends on the concomitant 
resistance to partner drugs.

Plasmodium falciparum multidrug resistance gene is located 
in the chromosome 5 of Plasmodium genome and it encodes 
Pfmdr1 protein also known as Pgh-1.27 This protein is basi-
cally localised in the digestive vacuole of the parasite.28 Non-
synonymous point mutations in this protein such as N86Y, 
Y184F, S1034C, N1042D, and D1246Y alter accumulation of 
antimalarial drugs in the digestive vacuole and hence are asso-
ciated with either manifesting true resistance phenotype or 
increased sensitivity against chloroquine, quinine, mefloquine, 
halofantrine, lumefantrine, and artesunate derivatives both  
in vitro and in clinical field isolates.29-35

Pertaining to artemisinin resistance, overall knowledge about 
polymorphism pattern in K13 kelch propeller domain against 
different ACTs is of utmost importance. As ACT-artemether 
lumefantrine (ACT-AL) is the first line of treatment against 
uncomplicated malaria in the Northeast region of India, so this 
study was conducted to document current PfK13 kelch propel-
ler polymorphisms as well as corresponding Pfmdr1 polymor-
phisms in circulating P. falciparum field isolates from this region. 
The findings of this study will throw light on polymorphism 
pattern in these genes because collective information regarding 
polymorphism in PfK13 propeller domain and Pfmdr1 gene is 
scarce from this part of the country.

Methodology
Ethics

This study was reviewed and ethically approved by Institutional 
Ethics Committee, Regional Medical Research Centre, 
Northeast region (ICMR), Dibrugarh, Assam for enrolment of 
human individuals in this study.

Study site and sample collection

This study was conducted in Assam, Arunachal Pradesh, and 
Tripura states of Northeast region, India. A total of 169 blood 
samples from malaria infected human subjects were collected 

in 2014 and 2015 during seasonal transmission. Individuals 
with symptomatic and uncomplicated malaria were enrolled 
only after obtaining written consent either from participated 
individuals or from their legal guardians. Infection with 
malaria parasite was first confirmed by rapid diagnostic test 
(SD Alere, Alere Medical Pvt. Ltd., Gurgaon, Haryana, 
India) from finger-pricked blood, and subsequently, veni-
punctured blood (maximum 3 mL), as a source of P. falcipa-
rum isolate, was collected in K3-EDTA Vacutainer for 
genotyping study.

Isolation of genomic DNA and screening of mono 
and mix parasite infection

About 100 µL (final volume) genomic DNA was extracted 
from each samples using QIAamp DNA Mini Kit (Qiagen, 
Hilden, Germany) and used for genotyping study. Before gen-
otyping of target genes, samples were screened and verified 
through a highly sensitive nested polymerase chain reaction 
(PCR) protocol to determine whether they were mono-
infected with P. falciparum parasite or mix-infected with other 
Plasmodium species.36 Out of 169 malaria positive samples, a 
total of 134 samples were found to be mono-infected with  
P. falciparum parasite in the adopted nested PCR protocol 
(Figure 1). Samples with mix infection by other Plasmodium 
species were excluded, and only P. falciparum mono-infected 
samples were included for genotyping PfK13 and Pfmdr1 gene.

PCR amplif ication, sequencing, and sequence 
alignment

An 849-base pair (bp) Kelch propeller domain of K13 gene 
was amplified by a nested PCR protocol described recently.37 
Two separate partial fragments (534 and 864 bp, respectively) 
of P. falciparum multidrug resistance 1 (Pfmdr1) gene were also 
amplified by a nested PCR protocol with slight modifications38 
(Table 1). Consumables necessary for PCR were procured 
from Promega (Madison, WI, USA), and amplifications were 
performed in Veriti 96-Well Plate Thermal Cycler (Applied 
Biosystems, Foster City, CA, USA).

Polymerase chain reaction–amplified amplicons were puri-
fied by QIAEX II Gel Extraction Kit (Qiagen, Germany) after 
verifying in agarose gel (1.5%) electrophoresis. Purified PCR 
amplicons were outsourced to 1st Base DNA Sequencing 
Services, Malaysia, for bidirectional capillary sequencing using 
dideoxy chain termination chemistry.

Both forward and reverse DNA sequences were arranged 
in BioEdit sequence alignment editor to create consensus 
sequences.39 Each sequence was checked for the presence of 
single-nucleotide polymorphisms (SNPs) by reading through 
both forward and reverse strands. K13 kelch propeller 
domain polymorpshism identified among studied isolates 
were further compared with sequences available in GenBank, 
National Center for Biotechnology Information (NCBI) by 
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Basic Local Alignment Search Tool (BLAST).40 The set of 
K13 gene sequences were further translated, and amino acid 
sequences were compared with P. falciparum 3D7 reference 
sequences (PF3D7_1343700 and XM_001350122) in 
Molecular Evolutionary Genetic Analysis version 6.06 
(MEGA 6.06) in search of any mutation.41 Similarly, Pfmdr1 
polymorphisms in constituent codons were analysed in 
comparison with P. falciparum 3D7 reference sequence 
(XM_001351751).

Statistical analysis

Primary and raw data were put into Microsoft Office Excel, 
and frequencies were calculated using the same programme. 
Independent-sample t test was performed to compare between 
continuous variables. Sequence polymorphism analysis includ-
ing synonymous and non-synonymous SNPs, polymorphic and 

monomorphic polymorphisms, haplotype diversity (Hd), and 
nucleotide diversity (π) was performed using DnaSP software 
version 5.10.42 The ratio of non-synonymous to synonymous 
nucleotide substitution (dN/dS ratio) was assessed to deter-
mine departures from selective neutrality. For all performed 
tests, a P value <0.05 was considered to be statistically signifi-
cant (at the 5% level). Significance for probability of rejecting 
null hypothesis of strict neutrality (dN = dS) was determined in 
MEGA 6.06 (Nei-Gojobori method, bootstrap value 10,000 
replication) using the two-tailed Z test.43

Nucleotide submission and accession numbers

Nucleotide sequences of PfK13 gene in this study were depos-
ited to GenBank, NCBI under accession numbers 
KX575512-KX575645, and nucleotide sequences of Pfmdr1 
gene in this study were deposited to GenBank, NCBI  

Figure 1. Map representing 3 states of Northeast India and number of Plasmodium falciparum isolates included from each site.
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under accession numbers KP998529-KP998534, KT315542- 
KT315553, and KX575026-KX575277.

Results
Following the adopted nested PCR protocol, K13 kelch pro-
peller domain from all 134 P. falciparum field isolates was 
successfully amplified (Figure 2), sequenced, and analysed 
for SNPs. We mostly gave importance about polymorphisms 
that might have occurred after codon 440 to correlate our 

findings with available data in SEA till date. However, we 
considered all polymorphisms (synonymous and non-synon-
ymous) to evaluate the nucleotide diversity among the 
isolates.

Polymorphic sites in K13 kelch propeller domain

Genotyping analysis of K13 kelch propeller domain revealed 
a total of 6 polymorphic sites among these field isolates. 

Table 1. PCR primers and thermal conditions for genotyping PfK13 and Pfmdr1 gene.

GENE PRIMER SEqUENCE (5′-3′) SIzE, BP PCR CONDITION REFERENCES

K13 kelch propeller Primary PCR Menard and 
Ariey37

K13_PCR_F CGGAGTGACCAAATCTGGGA 2094 95°C for 15 min, 30 cycles 
(95°C for 30 s, 58°C for 2 
min, 72°C for 2 min), then 
72°C for 10 min; store at 4°C

K13_PCR_R GGGAATCTGGTGGTAACAGC  

Nested PCR

K13_N1_F GCCAAGCTGCCATTCATTTG 849 95°C for 15 min, 40 cycles 
(95°C for 30 s, 60°C for 2 
min, 72°C for 1 min), then 
72°C for 10 min; store at 4°C

K13_N1_R GCCTTGTTGAAAGAAGCAGA  

Pfmdr1 protein

Pfmdr1 fragment I Primary PCR Humphreys et al38

FN1/1 AGGTTGAAAAAGAGTTGAAC 578 94°C for 3 min, 40 cycles 
(94°C for 1 min, 52°C for 2 
min, 72°C for 1 min), then 
72°C for 10 min; store at 4°C

REV/C1 ATGACACCACAAACATAAAT  

Nested PCR

MDR2/1 ACAAAAAGAGTACCGCTGAAT 534 94°C for 3 min, 44 cycles 
(94°C for 1 min, 55°C for 2 
min, 72°C for 1 min), then 
72°C for 10 min; store at 4°C

NEWREV1 AAACGCAAGTAATACATAAAGTC  

Pfmdr1 fragment II Primary PCR

MDRFR2F1 GTGTATTTGCTGTAAGAGCT 958 94°C for 3 min, 40 cycles 
(94°C for 45 s, 51°C for 2 
min, 72°C for 1.5 min), then 
72°C for 10 min; store at 4°C

MDRFR2R1 GACATATTAAATAACATGGGTTC  

Nested PCR

MDRFR2F2 CAGATGATGAAATGTTTAAAGATC 864 94°C for 3 min, 40 cycles 
(94°C for 45 s, 55°C for 1.5 
s, 72°C for 1 min), then 72°C 
for 10 min; store at 4°C

MDRFR2R2 TAAATAACATGGGTTCTTGACT  

Abbreviation: PCR, polymerase chain reaction.
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Isolates from Arunachal Pradesh showed the highest num-
ber of polymorphic sites, whereas isolates from Assam and 
Tripura contained only 1 polymorphic site within this 
domain.

Synonymous SNPs in K13 kelch propeller domain

In total, 3 synonymous SNPs were detected in this study 
(Table 2). Isolates from Assam were not found with any syn-
onymous SNP. Only 1.5% isolates (2/134) particularly from 
Arunachal Pradesh were found to possess 2 synonymous 
SNPs in codons 700 and 701. In both codons, substitutions 
of adenine by guanine were observed at corresponding nucle-
otide sites 2100 and 2103, respectively. A set of 9 isolates 
(6.7%, 9/134) collectively from Arunachal Pradesh and 
Tripura contained another synonymous SNP at codon 703 in 
which substitution of adenine by cytosine was observed at its 
corresponding nucleotide site, i.e., 2109.

Non-synonymous SNPs: A481V, A675V, and 
D702N mutation in K13 kelch propeller domain

No isolate from Tripura was found with any non-synonymous 
SNP, showing a conservative wild-type kelch propeller  
protein in circulating parasite population. 4.5% isolates in 
Arunachal Pradesh (6/134) had a non-synonymous SNP at 
nucleotide site 1442 of codon 481 (GCT to GTT, substitut-
ing cytosine by thymine) which resulted in A481V mutation 
in the protein (Table 2). Apart from 20 earlier known site 
mutations, 2 new mutations A675V and D702N (having 
non-synonymous SNPs at nucleotide sites 2024 and 2104, 
respectively) were observed. A675V mutation was found in 
3.7% isolates (5/134; 1 in Arunachal Pradesh and other 4 in 
Assam). Similarly, 1.5% isolates (2/134) exclusively from 
Arunachal Pradesh were also found with D702N mutation. 
Two isolates from Arunachal Pradesh were collectively found 
with mutations in 3 consecutive codons, i.e., 700, 701, and 

Figure 2. 849 bp PfK13 gene partial coding sequence covering kelch protein codons. Lane M – 100 bp DNA ladder, lane S1 to S17 – amplicons from 

sample DNA, lane NTC – no template control.

Table 2. Polymorphism observed in PfK13 kelch propeller domain of Plasmodium falciparum isolates in Northeast region, India.

AMINO ACID 
CODON

NUCLEOTIDE 
SITE

REFERENCE 
AMINO ACID

MUTANT 
AMINO ACID

REFERENCE 
TRIPLET CODON

SNP IN TRIPLET 
CODON

FREqUENCy, 
n/N (%)

481a 1442 A V GCT GTT 6/134 (4.5)

675a 2024 A V GCT GTT 5/134 (3.7)

700b 2100 S — TCA TCG 2/134 (1.5)

701b 2103 P — CCA CCG 2/134 (1.5)

702a 2104 D N GAT AAT 2/134 (1.5)

703b 2109 T — ACA ACC 9/134 (6.7)

aNon-synonymous mutations resulting mutant alleles.
bSynonymous polymorphisms. Mutations in codons 700, 701, and 702 were observed collectively in 2 isolates of Arunachal Pradesh.
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702. In total, 9.7% (13/134) isolates were observed with non-
synonymous mutation in their K13 kelch propeller domain 
gene.

Pfmdr1 mutant alleles

Sequence polymorphism analysis (in codons 86, 184, 1034, 
1042, and 1246) of Pfmdr1 protein gene revealed that codons 
86 and 184 of Pfmdr1 protein were having mutant as well as 
wild-type alleles; rest of the codons were found to contain 
wild-type alleles only. The 86Y allele was found in 29.2% 
(14/48), 29.1% (16/55), and 35.5% (11/31) isolates from 
Arunachal Pradesh, Assam, and Tripura, respectively. The 
184F mutant allele was found in 47.3% (26/55) and 6.5% 
(2/31) isolates from Assam and Tripura, respectively, and this 
mutant allele was not found in any isolates from Arunachal 
Pradesh (Table 3). Considering these 2 mutations, isolates 
were observed with 2 single mutants (i.e., YYSND and 
NFSND) and 1 double mutant (i.e., YFSND) Pfmdr1 pro-
tein haplotypes. Among all mutant protein haplotypes, single 
mutant YYSND haplotype was found in 25.4% (34/134) iso-
lates followed by NFSND and YFSND in 15.7% (21/134) 
and 5.22% (7/134) isolates, respectively. However, wild 
NYSND haplotype was observed in 53.73% (72/134) 
isolates.

Moreover, 22 isolates that exhibited polymorphisms in 
K13 propeller domain were found to contain both wild-
type and mutant alleles in Pfmdr1 codon 86. Among these, 
9 isolates were presented with N86Y mutant allele, i.e., 
A481V in PfK13 with N86Y in Pfmdr1 (1/6), A675V in 
PfK13 with N86Y in Pfmdr1 (3/5), S700 + P701 + D702N 
in PfK13 with N86Y in Pfmdr1 (1/2), and T703 in PfK13 
with N86Y in Pfmdr1 (4/9). Remaining 13 isolates, though, 
possessed polymorphisms in K13 propeller domain but 
were found to have wild-type allele in Pfmdr1 codon 86 
(Table 4). No other codons in Pfmdr1 were found with 
mutant allele among these isolates.

Molecular diversity of K13 kelch propeller domain 
gene among isolates

The overall nucleotide diversity and mean haplotype diversity 
observed among these field isolates were 0.0004 and 0.295, 
respectively. Nucleotide and haplotype diversities were observed 
significantly higher in isolates of Arunachal Pradesh than Assam 
and Tripura (P = 0.04 and 0.038, respectively) (Table 5). The ratio 
of non-synonymous to synonymous mutation (dN/dS) among 
Arunachal Pradesh isolates was found to be greater than 1 (1.022), 
indicating positive selection of K13 polymorphisms. The proba-
bility of rejecting null hypothesis of strict neutrality (dN = dS) 
was found nonsignificant in all 3 studied parasite populations.

Discussion
Northeast region of India has remained as an evolutionary set-
back for evolving drug-resistant P. falciparum, and introduction 
of new mutations in key drug-metabolising enzymes is continu-
ing. Recently, a triple mutant sulfadoxine-resistant haplotype 
(i.e., ISGNGA) also became evident in a constituting state of 
Northeast India44 which was only evident earlier in western 

Table 3. Pfmdr1 mutation observed in Plasmodium falciparum isolates in Northeast region, India.

VALUE OF

MUTATIONS ARUNACHAL PRADESH 
(N = 48)

ASSAM (N = 55) TRIPURA (N = 31) TOTAL (N = 134)

N86Y 14 (29.2%) 16 (29.1%) 11(35.5%) 41 (30.6%)

y184F — 26 (47.3%) 2 (6.5%) 28 (20.9%)

Haplotypes

NySND 34 (70.83%) 18 (32.73%) 20 (64.52%) 72 (53.73%)

YySND 14 (29.2%) 11 (20.0%) 9 (29.03%) 34 (25.4%)

NFSND — 21 (38.2%) — 21 (15.7%)

YFSND 5 (9.1%) 2 (6.5%) 7 (5.22%)

Table 4. Corresponding Pfmdr1 mutation found in isolates with PfK13 
kelch propeller mutations.

K13 CODON WITH MUTATION MDR1 CODON TOTAL

A481V (n = 6) NySND 5

YySND 1

A675V (n = 5) NySND 2

YySND 3

S700 + P701 + D702N (n = 2) NySND 1

YySND 1

T703 (n = 9) NySND 5

YySND 4
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Cambodia.45 A unique finding in this study is the documenta-
tion of A481V mutation in circulating P. falciparum isolates 
from Arunachal Pradesh. To the best of our knowledge, no 
report with such finding is available from this region till date. 
Although we observed this mutation in low frequency within 
this region, it has been found to be present comparatively higher 
than that of the earlier findings in Myanmar.14 Two new muta-
tions, i.e., A675V and D702N, observed in this study have given 
our finding a distinct importance. These 2 mutations have also 
not been reported earlier from this region. Amino acid muta-
tions, i.e., A676D and H719N (near 675 and 720 codons, respec-
tively), of K13 propeller blade VI have been described recently 
from China-Myanmar border in low frequencies.16 Despite  
the actual role, we assume that D702N mutation might have 
emerged independently in this region and further evidence in 
future will unlock an approach for validation of its role in arte-
misinin resistance. However, A675V allele has been observed in 
frequency next to A481V allele. In a recent report by World 
Health Organization on Global Malaria Programme, A675V 
mutation has been confirmed as a candidate mutation in 
PfK13 propeller domain involved in conferring artemisinin 
resistance.23 Hence, evidence of this mutation in Assam and 
Arunachal Pradesh of Northeast region would incur primary 
importance in near future. Among all mutations, codon 703 
with synonymous mutation has been recorded comparatively 
high in this set of field isolates. However, presence of this muta-
tion is also consistent with the recent study in Myanmar.14 It is 
important to note that although these mutations are docu-
mented with low frequencies in this region, further surveillance 
would confirm the presence of these mutants in other areas of 
Northeast region. We further note that none of the studied 

isolates have found to be present with K13 mutations (viz., 
G533A and R561H) that were found earlier from this region.20 
Most recently, an important non-synonymous candidate muta-
tion, i.e., F446I within K13 propeller domain is reported in a 
Myanmar bordering area of Arunachal Pradesh.9 Presence of 
F446I mutation in this region, though, is notable, but it is very 
low in Arunachal Pradesh. Contrary to this, frequencies of 
A481V and A675V non-synonymous mutation found in this 
study are higher than that of F446I. However, A481V mutation 
has been described as non-reference allele responsible for pro-
longed parasite clearance half-life22 and its role is yet to evaluate.

Day-to-day progress in molecular surveillance of drug-
resistant malaria parasites has opened new paradigm for proper 
understanding of its kind, nature, and spread. Different cross-
sectional studies have described the scenario of prevailing and 
predominating K13 mutations in SEA, particularly, C580Y has 
reached fixation at the Myanmar-Thailand border and M476I 
prevailing in eastern border of Myanmar.8,14,19,22,24,46,47 In this 
study, neither C580Y nor M476I allele has been recorded in 
circulating isolates within this region. Moreover, evidence of 
F446I mutation in recent study indicates that it has either 
emerged in this region or spread from near most foci.

Presence of wild-type or mutant allele in codons 86, 184, and 
1246 of Pfmdr1 protein collectively determine susceptibility and 
resistance against ACT-AL treatment policy.48 In this study, we 
have found only wild-type alleles in codons 184 and 1246 in iso-
lates which are with K13 polymorphism, but a few are with 
mutant N86Y allele indicating about level of tolerance either 
against artemether or against lumefantrine, or both. N86 allele in 
Pfmdr1 has been shown in vitro in conferring less susceptibility 
to artesunate.49 Few isolates from Arunachal Pradesh have been 

Table 5. Molecular diversity indices observed in PfK13 kelch propeller domain of Plasmodium falciparum isolates from Northeast region, India.

PARAMETERS AND 
CHARACTERISTICS

VALUE OF

ARUNACHAL PRADESH ASSAM TRIPURA ALL SITES

Sample size 48 55 31 134

Total nucleotide sites observed 849 849 849 849

Monomorphic 843 848 848 843

Polymorphic 6 1 1 6

No. of segregating sites 6 1 1 6

No. of changes  

Synonymous 3 0 1 3

Non-synonymous 3 1 0 3

No. of haplotypes 5 2 2 5

Nucleotide diversity, π (SD) 0.00082 (0.00159) 0.00016 (0.00026) 0.00027 (0.00029) 0.00044 (0.00129)

Haplotype diversity (Hd) 0.480 (0.081) 0.137 (0.060) 0.232 (0.090) 0.295 (0.050)

Tajima’s value D (dN/dS) 1.022 NA NA 0.993

Abbreviation: NA, not applicable.



8 Human Parasitic Diseases 

found to contain only N86Y allele, but 42 isolates from Assam 
and 13 isolates from Tripura have both N86Y and Y184F alleles. 
However, these isolates containing Pfmdr1 mutations in both 86 
and 184 codons have been found to possess no polymorphism in 
their K13 kelch propeller domain. Mutation in codon 184 has 
been described previously responsible to mediate resistance 
against some antimalarials.50 But it is unclear that both N86 and 
Y184F mutations are involved either in lumefantrine resistance 
or implicated with compensating other mechanisms in parasite 
fitness against antimalarials.51 Exact association of Pfmdr1 and 
PfK13 mutations in resistance development cannot be ascer-
tained as study reports including these 2 genes are not sufficiently 
available. Wild-type N86 allele in Pfmdr1 has been found with 
increased tolerance to both artemether and lumefantrine sepa-
rately.52-54 Moreover, the presence of N86 wild-type allele is a 
probable factor in the development of resistance against lumefan-
trine, and frequency of this allele varies according to different 
malarial transmission settings.55,56 Pfmdr1 Y184F allele has 
either minor impact on drug response or weaker association with 
antimalarial effectiveness as compared with N86Y mutation, and 
expression of wild-type or mutant allele in codon 184 primarily 
depends on codon 86 status, class of drug to which parasite expose 
and genetic background of Pfcrt gene.29,57,58 Based on these, it can 
be said that parasites in this region with N86 wild-type allele in 
Pfmdr1 have acquired increased tolerance to artemether and 
lumefantrine partner drug. And mutant N86Y allele has effect on 
high resistance development against chloroquine. In this study, 
N86 has been found in higher frequency (i.e., 69.4%) indicating 
most of the isolates undergoing increased tolerance to lumefan-
trine. It is also noteworthy to state that presence of Y184F muta-
tion in considerable amount of P. falciparum isolates in this region 
may be due to increased artemether-lumefantrine drug pressure 
on parasite population. However, the presence of both wild-type 
and mutant alleles in Pfmdr1 codon 86 along with K13 A675V 
mutation is notable because A675V is a candidate mutation for 
artemisinin resistance. In addition, we want to note that evidence 
of higher nucleotide and haplotype diversity in Arunachal 
Pradesh field isolates compared with isolates of other 2 states are 
due to the presence high segregating sites in K13 gene.

Conclusions
It can be said that K13 mutations involved in artemisinin resist-
ance differ geographically. The evidence of A481V, A675V, and 
D702N non-synonymous mutations in this region is a quite 
important finding, suggesting emergence of other more K13 
polymorphisms in the future. Screening of mutations in Pfmdr1 
gene along with K13 propeller domain should also be taken into 
account to establish how mutations in this gene are associated 
with K13 mutations in different malaria endemic settings and 
correlated with resistance development because mutations in 
Pfmdr1 gene are involved in modulating tolerance against a 
group of antimalarial drugs. Most importantly, this study has 
confirmed the presence of A675V mutation for the first time in 
this region, indicating emergence of artemisinin resistance  

P. falciparum parasites. Higher frequency of Pfmdr1 N86 wild-
type allele also point towards parasites’ increased tolerance to the 
partner drug of currently employed ACT. In short, it can be con-
cluded that further molecular surveillance to document K13 and 
Pfmdr1 mutation patterns in details is of utmost importance in 
this part of India. Moreover, study in larger samples set will 
deliberately give a clear picture about prevalent and predominant 
K13 and Pfmdr1 mutation patterns in this region and their role 
against currently employed ACT-AL drug policy. These will 
help in understanding whether artemisinin resistance has been 
evolved in this region, and if so, it will further assist in imple-
menting effective control programmes to avoid spread of resist-
ant P. falciparum population from this region to other areas.
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