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ABSTRACT 

The so-called integrated energy facility (IEF) holds some promise as a partial 
solution to current world energy problems. An IEF combines a conventional 
electric energy producing plant with a set of appropriately chosen industrial plants 
which can productively utilize the waste steam, hot water, and flue gases which 
are by-products of electricity production. In effect, the conventional energy 
plant becomes a producer of multiple energy forms. One of the key decision 
points in the analysis of the IEF concept is the unit costs of each of the produced 
energy forms. Ceteris paribus, the IEF must, to be successful, produce these forms 
at lower unit costs than alternative means. 

Because the various energy forms are jointly produced, conventional methods 
of costing output run into serious difficulties. This paper describes a method for 
assigning unit costs which is informationally efficient and satisfies three demanding 
criteria. After developing the costing scheme, we show the approach is consistent 
with an optimal production level. We then show that the same approach, applied 
iteratively, can lead production to its optimal level. This approach is an alternative 
to arbitrary joint cost allocation schemes where the resulting unit costs have little 
or no significance. Significantly, the results of this new approach are in complete 
agreement with the results of traditional unit costing approaches when those 
approaches can be meaningfully applied. Thus, the new approach represents a 
generalization of unit costing techniques. 

* Funds for this research were provided by the Center for the Study of 
Environmental Policy, Penn. State University. 
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Unit Costing at Given Production Levels 

INTRODUCTION 

The integrated energy facility (IEF) is a concept which has recently come 
under scrutiny as a promising alternative to conventional energy generation 
techniques. An IEF combines an energy generation facility with an 
appropriate mix of energy using (industrial) customers so that a maximum 
amount of the various energy forms produced within the facility is channeled 
to productive use. For example, a conventional coal fired steam plant may be 
the energy generation facility within an IEF, but the otherwise waste products 
of flue gases, various grades of steam and heated water are channelled to 
customers with demands for those forms of energy. The IEF is an attractive 
concept because it combines energy conservation with the potential for 
upgrading the environment. The IEF, by utilizing waste energy, potentially 
reduces air and thermal pollution. 

Assessing the economic viability of an IEF is best accomplished by 
comparing the unit costs of the energy forms produced by the IEF with the 
unit costs of those same energy forms if they were produced by conventional 
means.1 This raises the question: how does one determine the unit costs of 
the various energy forms produced by a generating facility within the IEF? 
The apparent approach would involve identifying all the input elements, 
assigning total costs to each element, and then allocating the costs on the 
basis of some criterion, such as the BTU value of the relevant output energy 
forms. When stated in the abstract, this approach seems entirely reasonable. 
However, in attempting its actual implementation, it soon becomes evident 
that so much of the cost allocation depends on arbitrary decisions that the 
resulting unit costs have little practical meaning. The information content of 
these unit costs is remarkably uncertain, so their value as the basis of 
decision-making is highly suspect. 

JOINT COSTS 

The practical impossibility of meaningfully dissecting the supply of 
different energy forms from a single faculty is a problem not unique to IEF's. 
It is an instance of the more general problem of joint costs. The classic 
example of the joint costing problem involves the production of beef and 
leather from a steer. There is no apparently meaningful method to 
differentiate the costs of the leather from the costs of the beef. Indeed, 
economists have failed to provide a general solution to this problem. 

Our emphasis on unit costs stems from the observation that this is the dimension 
in which most decision-makers, both private and public, appear to prefer to work. 
Indeed, this paper was stimulated by a Federal research project in which unit costs 
were specified as the principal desired output, to be used as a decision aid. 
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The problem of joint costs is said, to arise when there does not exist a 
unique relation between the marginal costs of producing some output and the 
level of that output. That is, X and Y, two outputs, share the joint costing 
problem if the cost of producing an extra unit of X (its marginal cost, MC(X)) 
is not independent of Y. Total Cost of X and Y = ag + aj X + Ά-χΐ2 does not 
involve a joint costing problem since MC(X) = â  and MC(Y) = 2a2Y. 
Neither MC function depends on the other output. However, if Total Cost of 
X and Y = a0 + a1 X + a2Y2 + a3X · Y, then MC(X) = aj + a3Y and 
MC(Y) = 2a2Y + a^X, and the problem of joint costing appears. The 
marginal cost of an output is not uniquely related to the level of that output. 

It happens that there is one key difference between the general joint 
costing problem (for which there appears to be no adequate solution) and the 
joint costing problem at hand. Specifically, the general problem includes 
situations wherein the outputs are produced in fixed proportions. Beef and 
leather from cattle, and (theoretically) hydrogen and oxygen from water are 
examples of joint outputs produced in fixed proportions. An energy 
generation facility is not limited to producing different energy forms in fixed 
proportions, however. By varying the engineering parameters of the system, a 
wide range of different output combinations can be achieved. This 
observation allows the construction of a meaningful, operational, and 
relatively straightforward solution to the problem of costing joint energy 
outputs. 

The approach we adopt is a radical departure from traditional costing 
schemes. Rather than tracing inputs through the production process, and 
attempting to link each unit of each input to an eventual output, thus 
developing unit output costs based on unit input costs; our approach is to 
assign a set of unit costs based on considerations of the purposes the unit 
costs are intended to serve. These purposes are internal production control, 
external pricing to meet revenue requirements, and (from the social 
prospective) external pricing consistent with optimal resource allocation. We 
show not only that our assigned unit costs satisfy these requirements, but 
that traditionally calculated unit costs do not. In addition, there is good 
reason to believe the proposed approach is informationally more efficient: its 
implementation requires a minimum of information about the internal 
production process. 

A SIMPLE MODEL 

Let us again state the problem which must be addressed. In an integrated 
energy facility, several forms of useful energy are produced in a single 
production process. Thus, it is not possible to make a simple determination 
of, say, the cost of steam production. Nonetheless, for both the purposes of 
internal control of production costs and external pricing of the final products 
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(presumably influenced by a regulatory commission), meaningful unit costs 
must be assigned. We now show that a reasonable solution to this problem 
may be constructed. 

Assume that two products, steam and electricity, are jointly produced in a 
process whose inputs are land, labor, and capital. Let 

S 
E 
L 
N 
K 

= 
= 
= 
= 
= 

No. 
No. 
No. 
No. 
No. 

of units of steam produced, e.g.. 
of units of electricity produced, 
of units of land used 
of units of labor used 
of units of capital used. 

> in 
e-g-

BTlPs 
, in BUT's 

The production function can be represented by the implicit function 

F (S, E, L, N, K) = 0 (1) 

In words, the specification of L, N, and K (the inputs) allows certain 
(maximum) joint outputs of S and E. Graphically, the function can be 
represented by a set of product transformation curves (PTC), as in Figure 1. 
(L, N, K) represents a specific level of each input, and the lower PTC 
represents all the possible combinations of S and E which that input 
combination can achieve. For example (L, N, K) can be used to produce 
either (S', E') or (S", E"). (L, L, K) represents a higher level of inputs, 
thus the corresponding PTC is northeast of the first. 

Note that different proportions of electricity to steam output can be 
represented by rays eminating from the origin, as represented in Figure 2. 
For example, say R, represents an output proportion of electricity to steam 
of one to one, or 1.0. R9 represents .5 and Ro represents .25. 

CRITERIA FOR "GOOD" UNIT COSTS 

There are many ways in which unit costs may be assigned. However, our 
insistance that the assigned costs be meaningful for control and pricing leads 
to three criteria which the costing approach must satisfy. 

1. Assuming the unit costs assigned will provide the basis for pricing the 
output, the costs (and hence the prices) should induce an optimal 
consumption mix of the outputs, as gauged by traditional measures of 
social welfare. 

2. Assuming the unit costs will be used in production control decisions, 
the costs should induce the most efficient use of resources. 

3. Assuming the selling prices are based on the assigned unit costs, and 
assuming a regulatory mandate that the facility earn only a normal 
return on investment, the assigned unit costs should cover the total costs 
of production, with no excess profits. That is, if the outputs are sold at 
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Figure 1. Production transformation curves for an IEF. 
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unit cost, the resulting revenue should cover total production costs, and 
allow only a normal rate of return. 

DERIVING UNIT COSTS 

We now investigate the implications of each of these criteria for the unit 
costing approach. We initially assume the optimal production decision has 
already been made. Our only goal is to assign unit costs. Later, this 
restrictive assumption is dropped. The first criterion demands that unit costs 
(and by implication, prices) be consistent with optimizing social welfare. 
Social welfare is optimized when the value of the consumed goods most 
exceeds the cost of production. Thus 

MAXIMIZE /P(S)dS + /P(E)dE - C(L, N, K) 

SUBJECT TO F(S, E, L, N, K) = 0 

where P(S) and P(E) are the ordinary demand curves for S and E, 
/P(S)dS + /P(E)dE measures the gross benefits of consumption (area under 
the respective demand curves), C(L, N, K) is the cost of inputs, and F the 
production function relating outputs to inputs. Using the Langrangian 
approach to characterize an optimum, we have 

L = JT(S)dS + /P(E)dE - C(L, N, K) + X[F(S, E, L, N, K) ] 

whose first order conditions imply that 

PS _ 9F/9S 
PE 9F/3E (2) 

and, by assumption, the price of S will be its unit cost; and the price of E 
will be its unit cost. Letting Cg and Cg be the unit costs, we have 

P s = Cs (3) 

and 

PE = CE (4) 

The second criterion demands that the assigned unit costs induce efficiency. 
That is, for any given quantities of S and E which are produced, the minimum 
cost of that production must be ahcieved. Thus, we need to 

MINIMIZE Cs · S + CE · E 

SUBJECT TO F(S, E, L, N, K) = 0 
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The Lagrangian first order conditions imply 

8F/3S 
9F/9E (5) 

Finally, the third criterion demands that the energy facility just break even, 
i.e., 

P s · S + P E · E = C(L, N, K) (6) 

or, a total revenue must equal total costs. Conditions (2) through (6) 
summarize the requirements that a good measure of unit costs should satisfy. 
Fortunately, there is some redundance in the equations. In particular, using 
(3) and (4), it is seen that (2) and (5) are equivalent; and that (6) may be 
expressed as 

S + Cr C(L, N, K) (7) 

Thus, the issue boils down to finding (or assigning) unit costs so that both 
(5) and (7) are simultaneously satisfied. Remember, our purpose here is to 
determine unit costs once the production decision has been made. Thus, if it 
is determined that S* and E* are to be produced, and the lowest cost 
C*(L, N, K) is found, (5) and (7) become two independent equations in two 
variables Cg and Cg. Thus, a unique solution always exists. To see this, let 

n, dF/dS . . .. . 9F/9S 
W = a F / 3 Ë ' a n d n 0 t e t h a t â F / 9 Ë 

evaluated at S*, E* is a constant. Thus (5) may be rewritten as 

_ S = W, or Cs = W CE, or Cs - W CE = 0. 

Likewise C(L, N, K) at S*, E* is a constant TC. The system comprised of 
(5) and (7) may be written as 

1 

S* 

The system has a unique solution as long as the 2 x 2 matrix has an inverse, 
and an inverse exists as long as the matrix is non-singular. Its déterminent is 
D = E* +W S*. Since all variables are positive, it follows that D is necessarily 
positive, hence non-zero. Thus, the 2 x 2 matrix is non-singular, its inverse 

-W" 

E* 

~ c s ~ 

_ C E . 

_ 
"0 

TC 
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exists, and unique Co and Cg exist. For latter reference, the solution to the 
system is 

W · TC _ TC 
E + WS ' t E - WS ' 

In order to make the approach operational, we need to show that the right 
hand side (RHS) of (5) is a meaningful expression. In fact, it is easy to show 
that the RHS of (5) corresponds to the slope of the PTC in Figure 1. That 
is, it is the rate at which steam and electricity must be traded off when 
inputs are kept constant. To see this, start with the production function, (1), 
F(S, E, L, N, K) = 0. Take the total differential 

|| dS + § dE + |f dL + g dN + § dK = 0. 9S 9E 9L 9N ΘΚ 
Note that along a PTC, L, N, K are constant, so dL, dN, dK each equal 0. 
Using that result, and rearranging, we find 

dE = _ 9F/9S 
dS 9F/9E ' 

That is, the slope of the PTC (the marginal rate of product transformation) is 
the negative of the RHS of (5).2 

A simple example will show how the above approach, summarized by (5) 
and (7), can determine meaningful unit costs. 

Suppose current production is E = 200 and S = 400, and the minimum 
total cost is 100. Suppose the marginal rate of production transformation is 
1.2, i.e., to produce one more unit of electricity while keeping all inputs 
constant, 1.2 less units of steam must be produced. From (5) we know that 

CE 
1.2 

and from (7), 

Cs · 400 + CE · 200 = 100 

The solution is that the unit cost of steam, Co, is .176, and the unit cost of 
electricity, Cg, is .147. It is important to note, first, that these unit costs can 
be assigned without dissecting the production process nor tracing the inputs 

Note that in the case of joint production with outputs in fixed proportions, 
is not defined since output substitution is not possible. Hence, as mentioned 

dF/dE 
above, this approach will not solve the problem of costing joint fixed proportion 
outputs. 
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through that process and, second, there is absolutely no reason to believe that 
these unit costs would be arrived at by traditional cost allocation schemes. 
And to reiterate, these unit costs: 

1. induce an optimal consumption pattern, 
2. induce efficiency in intrafirm resource allocation, and 
3. provide a fair return to the energy facility. 

Our approach to costing joint energy outputs leads to the somewhat 
surprising conclusion that it is not necessary to dissect the physical-
engineering energy generation facility in order to arrive at the unit costs of 
the various energy output forms. This is not to suggest, however, that the 
approach is completely divorced from the engineering parameters of the 
system. Rather, the minimum requisite engineering information is identified 
and circumscribed. That minimum is the trade-off rate between or among 
the various energy output forms in the neighborhood of the desired output as 
inputs are held constant. While this trade-off rate is rarely readily apparent, 
it can usually be estimated by a combination of design and operating data. 
Given our criteria for judging the "goodness" of estimated unit costs, the 
unit costs derived in the manner we describe must be judged superior to unit 
costs which are based on a thorough dissection of the energy generating 
process, even though far more engineering information would presumably be 
used in calculating the latter. The merits of our approach, then, include 
economy of information as well as improved unit costs. 

Unit Costs and Achieving Optimal Production 

THE DYNAMIC PROBLEM 

So far our concern has been with the purely static problem of assigning 
unit costs in a joint product situation after the production decision has been 
made. In particular, if the socially optimum production level has somehow 
been determined, then the unit costs defined by (5) and (7) have the three 
especially appealing properties. 

Now suppose the optimum production level is to be determined. Can 
prices based on our unit costs aid in this determination? Are conditions (5) 
and (7) consistent with the socially optimum production level? The latter 
question is important because we have not yet established that the 
quantities demanded of the various energy forms at the unit prices defined by 
(5) and (7) will be consistent with the quantities supplied which gave rise to 
those prices. Our plan for this part of the paper to define the concept of 
optimum production level, examine the relation between production levels 
and unit costs, suggest an iterative approach which will drive production to 
its optimal level, and finally demonstrate that the solution iteratively achieved 
is consistent with the static costing conditions, (5) and (7). 
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THE OPTIMUM LEVEL OF PRODUCTION 

From society's viewpoint, the best output level for any good is that level at 
which its marginal revenue product (MRP) equals its marginal cost (MC). A 
good's MRP is the value added by the last unit produced of the subject good 
in the production of some other good. MC is, of course, the cost of 
producing the last unit of the subject good. To see that MRP = MC is the 
condition for optimality, assume it is violated. Specifically, assume 
MRP > MC. This means that, say, the last unit of steam used in the 
production of widgets adds $20 to the value of widgets produced, while the 
cost of the last unit of steam is $5. Clearly, the production of one more unit 
of steam yields a net benefit of $15 ($20 in gross benefits less $5 in cost). 
Equally clear is that the initial production level of steam could not have been 
optimal since a change in that level improves social welfare. Only if MRP = 
MC is no improvement possible. The output level must then be optimal. 

Figure 3 illustrates the argument. At low levels of S, MRP exceeds MC and 
benefits are derived by increasing S. At high levels, the converse is true. The 
MC curve for S can be thought of as being constructed in terms of E. The 
MC of a unit of S is, indeed, the units of E sacrificed. Thus, the MC curve 
reflects the values of the slope along a product transformation curve of 
Figure 1. Since more and more E must be sacrificed to successively 
increment steam output, MCg necessarily rises to the right. MRPg slopes down 
to right due to the law of diminishing marginal productivity. Extra units of 
steam add less and less to the value of widget production, ceteris paribus. 

UNIT COSTS, MRP, AND MC 

The approach detailed under "Unit Costing at Given Production Levels" is 
based on the premise that output levels are used to determine unit costs. 
These costs, or prices, are then used by production management to efficiently 
channel resource use and by customers as the basis for their purchase 
decisions. It is well known from economic theory that customers will 
purchase S and E in amounts such that 

MRPS P s 

MRPE PE 

and that efficient production managers will produce S and E so that 

MCS Ps 

(8) 

MCE P E 

(8) and (9) are first order optimizing conditions for customers and managers, 
respectively. 

(9) 
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Figure 3. The optimal level of steam production. 

Before proceeding, an additional assumption must be added to our model. 
We assume that total cost function for S and E is linear homogeneous. That 
is, if 

TC = g(S, E), then a · TC = g(aS, aE) 
(10) 

for a > 0 
It must be stated that (1) is merely a simplifying assumption. It will be 
discarded later. Nonetheless, there is a good deal of evidence that cost 
relations do tend to be linear homogeneous. This assumption enables us to 
temporarily avoid second-best problems.3 

The so-called theory of the second-best addresses decision problems in which the 
satisfaction of the usual first order conditions for optimality is precluded by constraint. 
In this case, the optimality condition (to be derived) that the price equal the marginal 
cost would be precluded by the revenue equals cost constraint if the total cost function 
were not linear homogeneous. See Joint Costs on page 40. 
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Suppose the current level of steam output is S (steam supplied), and the 
current level of electricity output is Es. At these outputs there is defined a 
Marginal Rate of Product Transformation (MRPT). The MRPT determines the 
ratio of the unit costs Cc to C£ from (5). (7) determines their absolute level. 
The solution to the set of simultaneous equations, (5) and (7), yields unit 
costs 

_ - R ■ TC (11) 
CS - E - K S 

where R = --,„,.,„ = - MRPT between S and E oF/ΘΕ 

(12) 

(13) 

From (3), ( 

R = 

4), and (5), we see that 

- VPE 
and from (9) and (12) we 

R = - MCS/MCE 

Substituting (13) into (11 

CS = 

Multiplying 

cs = 

MCS/MCE 

MCS 
F + 

MCE 

the RHS by -

Mcs · 
MCE · E -f 

have 

) yields 

• TC 

S 

MCE 
..-, results in MCE 

TC 
• MCS · S (14) 

Now, by assumption, the total cost function, TC = g(S, E) is linear 
homogeneous. By Euler's theorem4 we have 

TC = —^ ■ S + ^ · E = MCS · S + MCE · E (15) 

Substituting (15) into (14) and simplifying yields 

Cs = MCS (16) 

Euler's theorem states that if Y = F(X,, X-) is homogeneous of degree m, then 

m Y = _ | F . X l + . 3 F - -
9Xi 9 Ä 2 
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and it's easily shown that 

CE = MCE (17) 

Where the total cost function is linear homogeneous, the unit costing approach 
defined by (5) and (7) is nothing more than assigning marginal costs as unit 
costs! Using these unit costs as prices is simply marginal cost pricing! 

A DYNAMIC ITERATIVE PROCEDURE 

Having shown that our unit costs are, in fact, marginal.costs, an algorithm 
to find the optimal output level is easily constructed. As might be expected, 
the algorithm simulates a competitive market. At the current (assumed non-
optimal) output levels, Ss and Es , the unit costs defined by (5) and (7), Cg 
and Cg, are simply MCg and MCg. Let us concentrate on MCQ. The 
situation is depicted in Figure 4. Since S is less than S*, the unit cost 
(price) defined by Ss (found on the MCg curve) elicits a quantity demanded 
in excess of S*. An excess demand for S is management's signal to 
increase Ss, which defines a new Co, a new SD, and so on. At each step, 
excess demand (or excess supply) signals the direction of changes needed in 
S . Convergence toward S* is assured.5 A similar series of steps is, of 
course, carried out in the E market. It is worth noting that the MC curves 
are not fixed. Rather, because S and E are joint products, MCg shifts with 
changes in E and MCg shifts with changes in S. 

Note also that each step in the dynamic process of moving toward the 
optimum is consistent with (5) and (7). Our unit costing approach is 
appealing not only at the optimum, but at sub-optima as well. For, applied in 
an iterative fashion, the same unit costing rules which support an optimum 
can lead production decisions toward that optimum. 

GENERALIZATION TO DECREASING MARGINAL COSTS 

Finally, let us briefly indicate how our approach to determining unit costs 
in a joint production situation may be extended to the case of decreasing 
marginal costs. It is well known that marginal cost pricing in the presence of 
decreasing marginal cost causes negative profits to be earned. Clearly then, 
marginal cost pricing cannot be adopted by an IEF. Constrained to violate 
the social production optimality condition, we enter the realm of the 
second-best. The problem is to choose unit costs which satisfy (7) and yet 
yield the greatest social welfare. Operationally, the produced quantities of S 
and E will be less than their socially optimal ("first-best") levels. How 
should the production costs be distributed between S and E? 

5 We have not defined a rigorous convergence process since the literature abounds 
with examples. The precise convergence process is only a tangential issue here. The 
basic idea is simply the simulation of a competitive market. 
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Figure 4. Convergence in the steam market. 

The problem can be formulated as follows: maximize the net benefits from 
the consumption of S and E while maintaining total revenues equal to total 
costs. 

Net benefits = gross benefits — gross costs 

S E 
= / P(S)dS + / P(E)dE - g(S,E) 

0 0 
(18) 

where MRPg = P(S) and MRPg = P(E). These, of course, are the demand 
curves for S and E, respectively. g(S, E) is the total cost function for S and 
E. 

Total Revenues = Co · S + Cc ■ E 

where Cc and Cp are the unit costs to be determined. The appropriate 
Langrangian expression is, using (18) and (19), 

(19) 
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S E 
£ = / P(S)dS + / P(E)dE - g(S, E) + \(CS- S + CE · E - g(S, E)) (20) 

0 0 

By observing that if Cg is the unit price of S, and S units are demanded at 
Cç, then the MRPg at S is Cg, we have 

3S = Cs - MCS + X(CS + S - ^ - MCS) = 0 

9£ 9 C F 
-3Ë = CE - MCE + X(CE + E - ^ - MCE) = 0 

Now recall that elasticity of demand (for S) can be expressed as 

t
 CS 9S 

ÇS - s 9CS 

(21) 

(22) 

(23) 

Using (23) and the analogous expression for £E, (21) and (22) may be 
rewritten as 

MC«. 
) = 0 (24) cs -

CE = 

MCS + λ (1 -

MCE + λ (1 -

1 

1 

cs J 

MCE 

CE 

Cs - MCS 

cs 
CE - MCE 

CE 

h 
k 

) = 0 (25) 

Solving each of (24) and (25) for λ, equating, and rearranging terms results in 

(26) 

The solution to this second-best problem is that each unit cost may be set so 
that its percentage deviation from marginal cost is inversely proportional to 
that good's elasticity of MRP.6 Thus, while retaining condition (7), (5) must 
be replaced by (26). The simultaneous solution of (7) and (26) define 
second-best unit costs under joint production. An iterative procedure may 
also be constructed on (7) and (26) to drive production toward its second-
best level. 

Baumöl and Bradford derived this result in [1] . We believe our derivation is 
somewhat more straightforward, however. 



54 / PETER G. SASSONE 

Summary 

Unit costs of production form the basis for crucial resource allocation 
decisions. Especially in the case of joint products, unit costs tend to be 
computed from crude conceptual dissections of the physical-engineering 
production system and arbitrary rules of thumb for allocating joint costs. 
Using the example of an IEF, we have shown that even in the "jointest" cases 
of production, meaningful unit costs may be constructed with a minimum of 
information. Our approach was to characterize "good" unit costs and derive 
the costing rules from these characterizations. We showed that when total 
cost is a linear homogeneous function, our unit costs are simply marginal 
costs. The unit costs assigned by (5) and (7) not only support an optimum 
production level, but are the foundation for a sequential process of driving 
output toward the optimum. Finally, in second-best cases, the unit costing 
approach must be modified by substituting (18) for (5). 

Almost paradoxically, while our intent was to circumvent the traditional 
costing of output which operates via the analysis of input costs and the 
production process, our conclusion—marginal cost pricing (at least for the 
linear homogeneous case)—is completely consistent with the traditional 
approach, if that traditional approach could be implemented. As was 
discussed, the attempt to implement the traditional costing approach runs into 
an impasse when it encounters joint costs. By focusing on the output side of 
the production process, the marginal cost of a unit of joint output is defined, 
not in terms of the inputs, but in terms of the amount of the other (joint) 
output which must be sacrificed to produce that unit. The true opportunity 
costs of production are thereby revealed. Thus, our overtly radical approach 
to unit cost estimating results in finding the same unit costs sought, but 
unattainable, by the traditional methods. 
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