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ABSTRACT 

Recognition of man's increasing power to affect his environment has 
resulted in formulation of mathematical models to describe physico-
chemical-biological interactions. Stochastic theory can be applied to 
deterministic models of eutrophication to include consideration of the 
inherent variability of biological responses. A conceptual model format 
for this stochastic simulation is presented. 

Introduction 

Within the domain of the scientific method are three theories of 
practice which are concerned with the search for truth [1] . 
Bounded by the extremes of the pure and the applied scientist are 
the intermediate or modus operandi investigator who bridges theory 
and practice. The environmentalist performing at the level of 
modus operandi recognizes man's increasing power to affect his 
environment and his destruction potential. It thus becomes in­
creasingly more important for man to be able to evaluate the 
probable results of a given set of actions. This paper is designed to 
show how stochastic theory can be applied to quantify the 
accelerated rates of eutrophication which are spoiling our 
waterways. 
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Eutrophication refers to a natural or artificial addition of 
nutrients to a body of water as well as the effects of increased 
nutrients [2] . Although inherently a natural process relating 
directly to the aging of a lake, it can be greatly accelerated by 
man. Limnologists are uncertain as to whether consequences of 
natural eutrophication parallel those of eutrophication accelerated 
by man, or whether eutrophication is reversible within a reasonable 
time span. This latter uncertainty underscores the urgent need to 
understand eutrophication and to be able to predict the effects of 
artificially adding nutrients to lakes, streams and rivers. 

Simplified Aquatic System 

The impact of water resources development projects on aquatic 
ecosystems, measured in terms of accelerated eutrophication and 
resulting economic and social losses, has become a matter of rising 
concern both in the United States and abroad. If we consider the 
potential combined effects of increased domestic sewage, salinity 
increases, and agricultural drainage effects we are led to conclude 
that the environment would experience greatly accelerated eutro­
phication. There is little doubt that a serious need exists for 
methods and tools which will permit assessment of the shifts in 
rates of eutrophication and in the merits or demerits of alternatives 
for control of eutrophication. Realizing the need for such a 
capability in dealing with eutrophication, we find it necessary to 
understand biotic and abiotic relationships in the aquatic system. 
A simplified aquatic model (Figure 1) deals with a nutrient source, 
primary producers (phytoplankton), and primary consumers 
(zooplankton). Usually very general parameters such as tempera­
ture and levels of a few nutrients are the variables of interest. Most 
of the inputs are lumped, e.g., fish grazing is represented by one 
factor. Models of fish population dynamics have been expanded by 
Patten [3] . 

A more complete model of an aquatic ecosystem is given in 
Everett [4] . The higher plants have been omitted. Although we 
conceptually understand the paths in Figure 1, postulating 
functional relationships is difficult because of the lack of complete 
simultaneous data acquisition and other sampling problems. 

Stochastic Model 

Although the modeling of biological phenomena must be con­
sidered an infant science, numerous mathematical constructs have 
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been formulated and have proven useful for describing (within 
fairly reasonable error limits) the dynamics of aquatic systems 
[5-7]. Like any mathematical description of ecological processes, 
these formulations have necessarily included numerous simplifica­
tions which have varying effects on the realism and utility of the 
models. One common characteristic is the treatment of large 
organism groups (at various trophic levels for example) as 
homogeneous populations with identical patterns of response to 
variations in such environmental characteristics as temperature, 
nutrients, availability of food materials and prédation pressure. This 
is clearly an oversimplification as the response of an organism is 
dependent upon genetic make-up and its environmental history 
(disease, nutrition, exposure to various environmental stresses, etc.). 
As these factors are variables within each individual of even a 
mono-specific population, the response of even this mono-specific 
group may thus be viewed as a stochastic process. 

Lewontin stressed that the understanding of ecological and 
evolutionary influences is not possible if populations are regarded 
as homogeneous collections of individuals [8] . In fact, shifts in 
biotic populations occur via selection processes which act upon 
phenotypic variation. This paper describes a methodology for 
dealing with this stochastic character of biotic populations response. 

We will consider a stochastic model of a phytoplankton-
zooplankton population where x and y represent the respective 
sizes of the two populations. The state of the system at any time 
can be represented by the ordered pair (x, y). The system can 
change state as a result of either births or deaths of either species. 
Migrations will not be considered, although they do not pose 
serious additional difficulties. We will assume that these births and 
deaths are independent events that individually satisfy the following 
four assumptions of the Poisson process: 

1. The probability of exactly one event occurring in the time 
interval (t,t+5t) is rôt-O(ôt); 

2. The probability of more than one event occurring in the time 
interval (t,t+5t) is 0(5t); 

3. The probability of zero events occurring in the time interval 
is l-rôt+0(ôt); and 

4. The above probabilities are independent of the state changes 
of the system during an interval of time (Τ,Τ+ΔΤ) where 
Δ Τ » δ ί . 

The usual form for the last assumption is that the probabilities 
in the first three assumptions are totally independent of the state 
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of the system [9] . Since our birth and death rates are somewhat 
state dependent, we need the modified form given above where ΔΤ 
is chosen such that the probability that there is a significant 
percentage change in a state within the time interval is arbitrarily 
close to zero. In practice, it is convenient to attempt a simulation 
with a prescribed value of ΔΤ and examine the results to check the 
validity of the fourth assumption rather than trying to derive an 
analytical expression for ΔΤ. With a proper choice of ΔΤ, if the 
state changes within the time interval do not appreciably change 
the birth and death rates, then we can treat these rates as constants 
that depend only upon the state at the beginning of the time 
interval. 

A consequence of these four assumptions is that the probability 
of exactly k events of a given type occurring within the interval 
(Τ,Τ+ΔΤ) follows a Poisson distribution: 

p(k,r) = ί ^ Ρ ^ βχρ(-ΓΔΤ). 

Let rx+ and ry+ be the respective birth rates of the phytoplankton 
and zooplankton populations, and rx__ and ry„ the respective death 
rates. If the system is in the state (x,y) at the T, the probability 
Pr((x,y), (x+a,y+b), ΔΤ) of a transition to a state (x+a,y+b) at time 
Τ+ΔΤ can be evaluated as follows: 

Pr((x,y), (x+a,y+b), ΔΤ) = 

Σ p(i,rx + ) p(i-a,rxO 
Y Σ P(J,rv+) P(j-b,ry,) 

j = b 

It is not, however, practical to evaluate these probabilities in 
order to obtain a transition matrix, since the transition probabili­
ties are not stationary in time, and the transition matrix is infinite 
dimensional. Instead, we will develop a Monte Carlo simulation of 
the system. Since we know the distributions of the number of 
births and deaths of each species within a time interval (Τ,Τ+ΔΤ) 
as a function of the state at time T, we can generate values from 
these distributions to simulate the number of births and deaths 
occurring in the time interval, and then very simply calculate the 
state at time Τ+ΔΤ. We can then recalculate the birth and death 
rates for the next time interval in terms of the state at time Τ+ΔΤ, 
and proceed with our simulation. The accuracy of the simulation 
relative to assumption number four can be improved by reducing 
the size of ΔΤ. The limit of reducing the size of ΔΤ would involve 
recalculation of the birth and death rates after each birth or death, 
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which is the standard Monte Carlo simulation procedure. Since we 
will be dealing with phytoplankton and zooplankton populations 
whose sizes will normally be extremely large, this standard pro­
cedure is infeasible for a practical simulation. 

We will modify the above stochastic population model by 
introducing the limiting nutrient supply into the state vector. This 
is necessary because the phytoplankton birth rate depends strongly 
upon the limiting nutrient supply. Since changes in limiting nutrient 
supply depend to a large extent upon births and deaths of phyto­
plankton, we cannot treat the nutrient "births" and "deaths" as 
events independent of phytoplankton births and deaths. We will, 
therefore, treat the limiting nutrient supply in a deterministic 
fashion as described below. 

After our simulation generates the number of births and deaths 
of each population in a given time interval (Τ,Τ+ΔΤ), we will 
calculate the changes in nutrient supply based upon these events 
as well as other contributing factors such as external nutrient 
inputs. This enables us to calculate the limiting nutrient supply at 
time Τ+ΔΤ in terms of the state and input at time T. 

We are now prepared to describe our model in rigorous system 
theoretic terms. The terminology used in the model is from Wymore 
[10,11] . 

System Theoretic Model 

From phytoplankton-zooplankton-nutrient interactions, it 
becomes apparent that any model we develop lacks analytical 
tractability primarily because of the nonstationary character of the 
transition rates. We, therefore, must develop a model which lends 
itself readily to computer simulation in order to have a useful 
model. The following system theoretic form of the model was 
chosen because it illustrates both the biological interactions and 
the logic of the Monte Carlo simulation in a reasonably concise, 
clear, and rigorous fashion. A finite state machine model is insuf­
ficient because there are an infinite number of possible states of 
the system. References will be made to some constants and 
functions which are explained below. 

The function POISSON(x) is defined uniquely by the following 
relationships: 

1. POISSON(x) eFUNCTIONS ([0,1] ,NONNEGATIVE-
INTEGERS); 

2. For every reREALS [0,1], 
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( P O I S S O N ( x ) ) ( r ) - l k (P O I S S O N (x ) ) ( r ) k 

Σ exp(-x)—<r< Σ exp(-x)fr. 
k=o K! k = 0 k! 

If r is a random observation from a uniform distribution on (0,1), 
then POISSON(x) is a random observation from a Poisson distribu­
tion with parameter x by the inverse transformation method of 
generating values from a probability distribution [12]. An alterna­
tive scheme is available for generating observations from a Poisson 
distribution when the mean is large, based on the normal 
approximation to the Poisson. 

The following constants and functions are also used: 
zbirthrate = growth rate function for zooplankton 

(organisms/hr.- organism- ° C) 
zdeathrate = assumed constant value of the fraction of zoo-

plankton lost to prédation by higher species, poisoning, etc. 
(organisms/hr.- organism- ° C) 

pbirthrate = growth rate function for phytoplankton population 
(organisms/hr.- organism- ° C) 

knut = Michaelis-Menton constant for limiting nutrient 
psink = phytoplankton sinking rate [/hr.-°C] 
pmass = average mass of phytoplankton organism (grams) 
npratio = nutrient to biomass ratio of phytoplankton 
volume = volume of water in section to be modeled (liters) 
kphytoresp = phytoplankton respiration coefficient (/hr.-°C) 
nutlossrate = fraction of total nutrients lost to sediment per hour 
kgraze = zooplankton grazing rate (liters/organism-hr.-°C) 
nother = nutrient release rate per hour by death and excretion 

of higher food chain elements 
depth = distance below surface of section to be modeled (meters) 
klight = coefficient expressing light intensity for maximum 

phytoplankton growth (langleys per hour) 
kext = light extinction coefficient (/meter) 
zooconveff = conversion efficiency of zooplankton at low 

phytoplankton concentrations 
kmp = Michaelis-Menton constant for phytoplankton 
We will define a system LAKE = (S,P,F,M,T,a) as a discrete 

system as follows: 
1. S=ZOOPLANKTON X PHYTOPLANKTON X NUTRIENTS 

where 

ZOOPLANKTON=PHYTOPLANKTON=NONNEGATIVE-
INTEGERS, and NUTRIENTS=NONNEGATIVEREALS. 
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The units of the plankton components of the state are number of 
organisms, whereas the nutrient component is specified by weight. 

2. P=TEMPERATURE X LIGHT INTENSITY X NUTRIENT 
IN X DEPTH X RANDOMi X RANDOM2 X RANDOM3 

where 

TEMPERATURE=REALS, LIGHT INTENSITY=NUTRIENT 
IN=DEPTH=NONNEGATIVEREALS, and 

RANDOMi=REALS[0,l] for i e INTEGERS[l ,3 ] . 

The units of temperature t and light intensity at the surface (Li) 
are respectively degrees Centigrade and langleys per hour, while 
the nutrient input is measured in grams, and the RANDOMj are 
random numbers generated from a uniform [0,1] distribution and 
for (zoo,phy,nut)eS, 

p = (t,Li,n,depth,r! ,r2 ,r3 ,)eP, 

3. (a(cp,l)) (zoo,phy,nut) = (zoo+deltazoo,phy+deltaphy, 
nut+deltanut) 

where 

deltazoo = (POISSON(zbirth-zdeath)) (rx ) 
deltaphy = (POISSON(pbirth-psink-pgrazed-presp)) (r2) 
deltanut = (POISSON(n+nzooexcr+nother-nphyassim-nsedloss)) (r3) 
zbirth = zbirthrate-zoo*t 
zdeath = Min(zdeath*zoo*t,zoo) 

pbirth = pb i r th ra t e -phy t - nut 
knut+nut 

. light 
klight exp 

light 
"klight 

light = Li-exp ( -kext 'depth) 
psink = Min ( t -ks ink-phy,phy) 
pgrazed = Min (t 'kgraze-zoo-phy/volume.phy) 

nzooexcr = 
pgrazed 
npratio 

zooconveff-kmp 
kmp+(phy/volume) 

nphyassim = pbirth-pmass· npratio 
nsedloss = nutlossrate · nut 
presp = k p h y t o r e s p - p h y t 

The above model is, of course, only a point model. For practical 
use, a number of point models should be used and linked together 
appropriately. In order to accomplish the linkage, movement of 
phy to plankton, zooplankton, and nutrients from the vicinity of 
one point to another must be considered. These transport terms 
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must then be encompassed into the state transition function σ 
either in a deterministic or stochastic fashion. Chen and Orlob 
consider vertical migration in their differential equations [7] , and 
Ditoro et al. consider horizontal migration in their model [5], 
both using a deterministic approach. Either of these approaches 
can be formulated in the system theoretic framework by defining 
systems for each point and coupling them. 

Conclusions 

Model evaluation is an extremely important and extremely diffi­
cult part of the modeling process. The previously discussed model 
has not yet been applied to a real world situation, so our model 
evaluation will be restricted to comparisons between our model 
and other models that have been evaluated. 

Basically, our model is a stochastic version of the differential 
equation model developed by DiToro et al. [5] . Differences occur 
because DiToro et al. concern themselves with biomass [5] , 
whereas we keep track of number of organisms. Therefore, changes 
in state in our model occur as a result of births and deaths, while 
growth causes changes in state in the DiToro model. Since neither 
model distinguishes between growth and reproduction, this 
difference is not very significant. 

Our approach to determining changes in nutrient level is also 
slightly different. We treat these changes as being a function of the 
changes in phytoplankton and zooplankton population levels rather 
than the population levels themselves. This difference is necessary 
for maintaining the mass balance viewpoint adopted by DiToro et al. 
[5] . In the deterministic case, there is a one-to-one correspondence 
between changes in population levels and the actual levels, whereas 
in the stochastic case the one-to-one correspondence is between the 
mean rate of change of population and the actual population size. 

The birth-death approach used in our stochastic model has never 
previously been used to describe phytoplankton-zooplankton inter­
actions, but it has successfully been used in biological modeling. 
The same is true concerning Monte Carlo simulation. Beyer et al. 
set up a birth-death model describing wolf-moose-plant interactions 
and ran a Monte Carlo simulation [13], and Bartlett used a birth-
death approach combined with Monte Carlo simulation to describe 
the competition between two species of flour beetles [14]. 

Several problems occur in attempting to apply such a model. 
Several of the constants such as kmp and k nut have no physical 
basis and must be estimated empirically. Other constants such as 
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zooplankton grazing rates are species dependent, and we are forced 
to use some sort of average grazing rate. The model also requires 
as input the water temperature, incident light intensity, and 
external nutrient supply at all times. These data are frequently 
unavailable. 

Since these problems are shared with the standard differential 
equation approach used by DiToro et al., Chen and Orlob, and 
many others, they do not represent a severe limitation upon our 
modeling approach [5-7]. Several conclusions can be drawn from 
our literature search and model development. We have found that 
system theory provides a clear and precise language for describing 
a complicated model. In addition, a computer simulation can easily 
be constructed from this form of the model. 

We have formulated a stochastic model of phytoplankton-
zooplankton interactions that seems to be an alternative approach. 
A final comparison of the two approaches must await a real world 
application. 

As indicated earlier, the simplest way of controlling excess algal 
growths seems to be limiting the external nutrient input. Monte 
Carlo simulation can be used to evaluate the effects of different 
amounts of nutrient inputs. 

Finally, our model has indicated a deficiency in the type of data 
generally available. In order to calibrate our model or a differential 
equation model, it is necessary to have data taken much more 
frequently than every two or three weeks. 

Water temperature, solar radiation, and nutrients from external 
sources are inputs to the model. These should be measured as 
frequently as deemed necessary to obtain an acceptable approxi­
mation to the actual input stream. The constants—pmass, kext, 
klight, nother, zooconveff, kmp, npratio, nsedlossrate, and ksink— 
should either be estimated from the available literature or estimated 
empirically. Frequent measurements of the state are necessary in 
order to preform the empirical estimation and laboratory data 
might provide a satisfactory basis for this estimation in many cases. 

Further work is, of course, necessary. As interactions between 
different species of phytoplankton and zooplankton as well as 
phytoplankton affinities for specific nutrients are understood, the 
state description can be modified to include each species separately. 
More work is also needed in the area of model calibration. Finally, 
a careful comparison should be made between the differential 
equation approach and the use of Monte Carlo simulation as a tool 
for studying the complicated problem of eutrophication. 
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